Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt: \(a-b=x;\)\(b-c=y;\)\(c-a=z\)
thì: \(x+y+z=0\)
Dễ dàng chứng minh đc:
\(x+y+z=0\)
thì \(x^3+y^3+z^3=3xyz\)
đến đây bạn thay trở lại nhé
\(5x.\left(x-10\right)-2x+2x+20\)
\(=5x^2-50x+20\)
\(=5\left(x^2-10x+5^2-21\right)\)
\(=5\left[\left(x-5\right)^2-\left(\sqrt{21}\right)^2\right]\)
\(=5\left(x-5-\sqrt{21}\right)\left(x-5+\sqrt{21}\right)\)
\(a\left(a-b\right)^2\left(a+b\right)-\left(b-a\right)^2\left(a^2-5ab+b^2\right)\)
\(=a\left(a-b\right)^2\left(a+b\right)-\left(a-b\right)^2\left(a^2-5ab+b^2\right)\)
\(=\left(a-b\right)^2\left[a.\left(a+b\right)-a^2+5ab-b^2\right]\)
\(=\left(a-b\right)^2\left[a^2+ab-a^2+5ab-b^2\right]\)
\(=\left(a-b\right)^2\left(6ab-b^2\right)\)
Sửa đề: \(\left(a-b\right)^2-\left(b-a\right)\left(a-3b\right)\)
\(=\left(a-b\right)^2+\left(a-b\right)\left(a-3b\right)\)
\(=\left(a-b\right)\left(a-b+a-3b\right)\)
\(=\left(a-b\right)\left(2a-4b\right)\)
\(=2.\left(a-b\right)\left(a-2b\right)\)
Tham khảo nhé~
a3(c - b2) + b3(a - c2) + c3(b - a2) + abc(abc - 1)
= a3c - a3b2 + ab3 - b3c2 + bc3 - a2c3 + a2b2c2 - abc
= a2b2c2 - b3c2 - (a2c3 - bc3) - (a3b2 - ab3) + (a3c - abc)
= b2c2(a2 - b) - c3(a2 - b) - ab2(a2 - b) + ac(a2 - b)
= (a2 - b)(b2c2 - c3 - ab2 + ac) = (a2 - b)[c2(b2 - c) - a(b2 - c)] = (a2 - b)(b2 - c)(c2 - a)
a) \(a^3\left(b-c\right)+b^3\left(c-a\right)+c^3\left(a-b\right)\)
\(=a^3b-a^3c+b^3\left(c-a\right)+c^3a-c^3b\)
\(=\left(a^3b-c^3b\right)+\left(c^3a-a^3c\right)+b^3\left(c-a\right)\)
\(=-b\left(c^3-a^3\right)+ca\left(c^2-a^2\right)+b^3\left(c-a\right)\)
\(=-b\left(c-a\right)\left(c^2-ac+a^2\right)+ca\left(c+a\right)\left(c-a\right)+b^3\left(c-a\right)\)
\(=\left(c-a\right)\left(-c^2b+abc-a^2b\right)+\left(c-a\right)\left(c^2a+ca^2\right)+b^3\left(c-a\right)\)
\(=\left(c-a\right)\left(-c^2b+abc-a^2b+c^2a+ca^2+b^3\right)\)
a) a3 (b-c) + b3 (c-a) +c3 (a-b)
<=> a3b – a3c +b3c – b3a + c3a – c3b
<=> b(a3 – c3) +c(a3 – b3) + a(b3 - c3)
(Tự áp dụng hằng đẳng thức)
b)
\(B=\left(a^2+b^2\right)^3+\left(c^2-a^2\right)^3-\left(b^2+c^2\right)^3\)
\(=\left(a^2+b^2+c^2-a^2\right)\left[\left(a^2+b^2\right)^2-\left(c^2-a^2\right)\left(a^2+b^2\right)+\left(c^2-a^2\right)^2\right]-\left(b^2+c^2\right)^2\)
\(=\left(b^2+c^2\right)\left[\left(a^2+b^2\right)^2-\left(c^2-a^2\right)\left(a^2+b^2\right)+\left(c^2-a^2\right)^2\right]-\left(b^2+c^2\right)^2\)
\(=\left(b^2+c^2\right)\left(a^4+2a^2b^2+b^4-a^2c^2+a^4-b^2c^2+a^2b^2-b^4-2b^2c^2-c^4\right)\)
\(=\left(b^2+c^2\right)\left(2a^4-c^4+3a^2b^2-a^2c^2-3b^2c^2\right)\)
ko chắc
\(\left(a^2+a\right)^2+3\left(a^2+a\right)-10\)
\(=\left(a^2+a+5\right)\left(a^2+a-2\right)\)
\(=\left(a^2+a+5\right)\left(a-1\right)\left(a+2\right)\)