Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^3-b^3+3a^2+3ab+b^2\)
\(=\left(a-b\right)\left(a^2+ab+b^2\right)+3\left(a^2+ab+b^2\right)\)
\(=\left(a-b+3\right)\left(a^2+ab+b^2\right)\)
A=9b^2c-3bc^2-9ac^2-3a^2c-9a^2b-3a^2+28abc
A=9.(b^2c-ac^2-a^2.b)-3.(bc^2+a^2.c+3a^2)+28abc
A=9.(b.(bc-a^2)-ac^2)-3.(c.(bc+a^2)+3a^2)+28abc
k dung mik nhe!!!!!
Bài 2 :
1) \(x^2+6xy+5y^2-5y-x=x^2-x+xy+5y^2-5y+5xy\)
\(=x\left(x-1+y\right)+5y\left(y-1+x\right)=\left(x+y-1\right)\left(x+5y\right)\)
Ca ca câu này mụi lm đc òi, lm hộ mụi mấy cái khác ik
2, a^3-3ab^2 = 5
<=> (a^3-3ab^2)^2 = 25
<=> a^6-6a^4b^2+9a^2b^4 = 25
b^3-3a^2b=10
<=> (b^3-3a^2b)^2 = 100
<=> b^6-6a^2b^4+9a^4b^2 = 100
=> 100+25 = a^6-6a^4b^2+9a^2b^4+b^6+6a^2b^4+9a^4b^2
<=> 125 = a^6+3a^4b^2+3a^3b^4+b^6 = (a^2+b^2)^3
<=> a^2+b^2 = 5
Khi đó : S = 2016.(a^2+b^2) = 2016.5 = 10080
Tk mk nha
1) \(x^2+6xy+5y^2-5y-x=\left(x^2+xy-x\right)+\left(5xy+5y^2-5y\right)\)
\(=x\left(x+y-1\right)+5y\left(x+y-1\right)\)
\(=\left(x+5y\right)\left(x+y-1\right)\)
2) Ta có : \(a^3-3ab^2-5\Rightarrow\left(a^3-3ab^2\right)^2=25\Rightarrow a^6-6a^4b^2+9a^2b^4=25\)
và \(b^3-3a^2b=10\Rightarrow\left(b^3-3a^2b\right)^2=100\Rightarrow b^6-6b^4a^2+9a^4b^2=100\)
\(\Rightarrow\)\(125=a^6+b^6+3a^2b^4+3a^4b^2\)
Hay \(125=\left(a^2+b^2\right)^2\Rightarrow a^2+b^2=5\)
Nên \(S=2016\left(a^2+b^2\right)=2016.5=10080\)
a) \(\left(a^2+b^2-5\right)^2-2\left(ab+2\right)^2\)
\(=\left(a^2+b^2-5\right)^2-\left(\sqrt{2}.ab+\sqrt{2}.2\right)^2\)
\(=\left(a^2+b^2-5-\sqrt{2}.ab-\sqrt{2}.2\right).\left(a^2+b^2-5+\sqrt{2}.ab+\sqrt{2}.2\right)\)
b) \(\left(4a^2-3a-18\right)^2-\left(4a^2+3a\right)^2\)
\(\left(4a^2-3a-18-4a^2-3a\right).\left(4a^2-3a-18+4a^2+3a\right)\)
\(=\left(-6a-18\right).\left(8a^2-18\right)\)
\(=\left(-6\right).\left(a+3\right).2.\left(4a^2-9\right)\)
\(=\left(-12\right).\left(a+3\right).\left(2a-3\right).\left(2a+3\right)\)
a) Xem lại đề
b) ( 4a2 - 3a - 18 )2 - ( 4a2 + 3a )2
= [ ( 4a2 - 3a - 18 ) - ( 4a2 + 3a ) ][ ( 4a2 - 3a - 18 ) + ( 4a2 + 3a ) ]
= ( 4a2 - 3a - 18 - 4a2 - 3a )( 4a2 - 3a - 18 + 4a2 + 3a )
= ( -6a - 18 )( 8a2 - 18 )
= -6( a + 3 ).2( 4a2 - 9 )
= -12( a + 3 )( 4a2 - 9 )
= -12( a + 3 )( 2a - 3 )( 2a + 3 )
3\(a^2\)+ a - 4 = ( 3\(a^2\)- 3a ) + ( 4a - 4)
= 3a (a-1) + 4(a-1)
= (3a+4). (a-1)
\(3a^2c^2+bd+3abc+acd\)
\(=\left(3a^2c^2+3abc\right)+\left(acd+bd\right)\)
\(=3ac\left(ac+b\right)+d\left(ac+b\right)\)
\(=\left(ac+b\right)\left(3ac+d\right)\)
a) x(y - x)3 + y(x - y)2 + xy(x - y)
= x(y - x).(y - x)2 + y(x - y)2 + xy(x - y)
= x(y - x)(x - y)2 + y(x - y)2 + xy(x - y)
= (x - y)[x(y - x)(x - y) + y(x - y) + xy]
= (x - y)[x(y - x)(x - y) + y(x - y) + xy]
b) 3a2x - 3a2y + abx - aby
= 3a2(x - y) + ab(x - y)
= a(x - y)(3a + b)
a) x( y - x )3 - y( x - y )2 + xy( x - y )
= -x( x - y )3 - y( x - y )2 + xy( x - y )
= ( x - y )[ -x( x - y )2 - y( x - y ) + xy ]
= ( x - y )[ -x( x2 - 2xy + y2 ) - yx + y2 + xy ]
= ( x - y )( -x3 + 2x2y - xy2 - yx + y2 + xy )
= ( x - y )( -x3 + 2x2y - xy2 + y2 )
b) 3a2x - 3a2y + abx - aby
= 3a2( x - y ) + ab( x - y )
= ( x - y )( 3a2 + ab )
= ( x - y )a( 3a + b )
g) 3a - 3b + a2 -2ab +b2
= 3(a-b) + (a-b)2
= (a-b)(3+a-b)
h)a2 +2ab + b2 - 2a -2b +1
= (a+b)2 -2(a+b) +1
=(a+b-1)2