Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(a + b + c)(ab + bc + ac) - abc
= a2b + abc +a2c + ab2 + b2c + abc + abc + bc2 + ac2
= (a2b + 2abc + bc2) + (ac2 + a2c) + (ab2 + b2c)
= b(a2 + 2ac + c2) + ac(c + a) + b2(a + c)
= b(a + c) + ac(a + c) + b2(a + c)
= (a + c)[b(a + c) + ac + b2]
= (a + c)(ab + bc + ac + b2)
= (a + c)[b(a + b) + c(a + b)]
= (a + c)(b + c)(a + b)
\(\left(a+b+c\right)\left(ab+bc+ac\right)-abc\)
\(=a^2b+abc+a^2c+b^2a+b^2c+abc+abc+c^2b+c^2a-abc\)
\(=ab\left(a+b\right)+c^2\left(a+b\right)+c\left(a^2+b^2+2ab-2ab\right)+2abc\)
\(=ab\left(a+b\right)+c^2\left(a+b\right)+c\left(a+b\right)^2-2abc+2abc\)
\(=\left(a+b\right)\left(ab+c^2+ca+cb\right)\)
\(=\left(a+b\right)\left(b+c\right)\left(a+c\right)\)
a. = x2(3x-2y)
b. = x(x - y) + (y - x)
= x(x - y) - (x - y)
= (x - 1)(x - y)
x8+x7+1=x8+x7+x6-x6-x5-x4+x5+x4+x3-x3-x2-x+x2+x+1=x6(x2+x+1)-x4(x2+x+1)+x3(x2+x+1)-x(x2+x+1)+(x2+x+1)=(x2 +x+1)(x6-x4+x3-x)
\(\text{a)}x^3-6x^2+12x-8\)
\(=x^3-2x^2-4x^2+8x+4x-8\)
\(=\left(x^3-2x^2\right)-\left(4x^2-8x\right)+\left(4x-8\right)\)
\(=x^2\left(x-2\right)+4x\left(x-2\right)+4\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+4x+4\right)\)
\(=\left(x-2\right)\left(x+2\right)^2\)
\(\text{b)}8x^2+12x^2y+6xy^2+y^3=\left(2x+y\right)^3\)
Bài 2:
\(\text{a) }x^7+1=\left(x^{\frac{7}{3}}\right)^3+1^3=\left(x^{\frac{7}{3}}+1\right)\left[\left(x^{\frac{7}{3}}\right)^2-x^{\frac{7}{3}}+1\right]=\left(x^{\frac{7}{3}}+1\right)\left(x^{\frac{14}{3}}-x^{\frac{7}{3}}+1\right)\)
\(\text{b) }x^{10}-1=\left(x^5\right)^2-1^2=\left(x^5-1\right)\left(x^5+1\right)\)
Bài 3:
\(\text{a) }69^2-31^2=\left(69-31\right)\left(69+31\right)=38.100=3800\)
\(\text{b) }1023^2-23^2=\left(1023-23\right)\left(1023+23\right)=1000.1046=1046000\)
\(=x^3-6x^2+12x-8-x+2\)
\(=\left(x-2\right)^3-\left(x-2\right)\)
\(=\left(x-2\right)\left[\left(x-2\right)^2-1\right]\)
\(=\left(x-2\right)\left(x^2-4x+4-1\right)\)
\(=\left(x-2\right)\left(x^2-4x+3\right)\)
\(a^7-b^7=\left(a-b\right)\left(a^6+a^5b+a^4b^2+a^3b^3+a^2b^4+ab^5+b^6\right)\)
\(a^7-b^7=\left(a-b\right)\left(a^6+a^5b+a^4b^2+a^3b^c+a^2b^4+ab^5+b^6\right)\)