\(a^5+a^4+a^3+a^2+a+1\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2016

=a^4(a+1)+a^2(a+1)+(a+1)

=(a+1)(a^4+a^2+1)

31 tháng 7 2016

a5+a4+a3+a2+a+1

=a4(a+1)+a2(a+1)+(a+1)

=(a+1)(a4+a2+1)

25 tháng 9 2018

a) \(\left(4x^2-25\right)^2-9\left(2x-5\right)^2\)

\(=\left(4x^2-25\right)^2-\left(6x-15\right)^2\)

\(=\left(4x^2-25-6x+15\right)\left(4x^2-25+6x-15\right)\)

\(=\left(4x^2-6x-10\right)\left(4x^2+6x-40\right)\)

\(=\left(4x^2+4x-10x-10\right)\left(4x^2+16x-10x-40\right)\)

\(=\left[4x\left(x+1\right)-10\left(x+1\right)\right]\left[4x\left(x+4\right)-10\left(x+4\right)\right]\)

\(=\left(4x-10\right)\left(x+1\right)\left(4x-10\right)\left(x+4\right)\)

\(=\left(4x-10\right)^2\left(x+1\right)\left(x+4\right)\)

\(=4\left(2x-5\right)^2\left(x+1\right)\left(x+4\right)\)

b) \(a^6-a^4+2a^3+2a^2\)

\(=a^2\left(a^4-a^2+2a+2\right)\)

\(=a^2\left(a^4+a^3-a^3-a^2+2a+2\right)\)

\(=a^2\left[a^3\left(a+1\right)-a^2\left(a+1\right)+2\left(a+1\right)\right]\)

\(=a^2\left(a+1\right)\left(a^3-a^2+2\right)\)

18 tháng 1 2019

Câu hỏi của giang ho dai ca - Toán lớp 8 - Học toán với OnlineMath

18 tháng 1 2019

https://olm.vn/hoi-dap/detail/9389242563.html

y đúc như bài trên

20 tháng 7 2019

\(A=x^5+x^4+1\)

\(A=x^5+x^4+x^3+1-x^3\)

\(A=x^3.\left(x^2+x+1\right)+\left(1-x\right).\left(x^2+x+1\right)\)

\(A=\left(x^3-x+1\right).\left(x^2+x+1\right)\)

9 tháng 3 2019

\(a^4+8a^3+14a^2-8a-15\)

\(=a^4+8a^3+15a^2-a^2-8a-15\)

\(=a^2\left(a^2+8a+15\right)-\left(a^2+8a+15\right)\)

\(=\left(a^2+8a+15\right)\left(a^2-1\right)\)

\(=\left(a+3\right)\left(a+5\right)\left(a-1\right)\left(a+1\right)\)

10 tháng 8 2016

a) 4(x2-y2)-8(x-ay)-4(a2-1)

    => 4x2-4y2-8x+8ay-4a2+4

    => 4(x2-y2-2x+2ay-a2+1)

c) a5+a4+a3 +a2 +a+1

    => a(a4+a3+a2+a+1)+1

\(x^8+x^4+1\)

\(=x^8+x^7+x^6-x^7-x^6-x^5+x^5+x^4+x^3-x^3-x^2-x+x^2+x+1\)

\(=\left(x^8+x^7+x^6\right)-\left(x^7+x^6+x^5\right)+\left(x^5+x^4+x^3\right)-\left(x^3+x^2+x\right)+\left(x^2+x+1\right)\)

\(=x^6\left(x^2+x+1\right)-x^5\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^6-x^5+x^3-x+1\right)\)

\(x^5-x^4-1\)

\(=x^5-x^4+x^3-x^3+x^2-x-x^2+x-1\)

\(=\left(x^5-x^4+x^3\right)-\left(x^3-x^2+x\right)-\left(x^2-x+1\right)\)

\(=x^3\left(x^2-x+1\right)-x\left(x^2-x+1\right)-\left(x^2-x+1\right)\)

\(=\left(x^2-x+1\right)\left(x^3-x-1\right)\)