Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a\left(b^2+c^2+bc\right)+b\left(c^2+a^2+ac\right)+c\left(a^2+b^2+ab\right)\)
\(=ab^2+ac^2+abc+bc^2+ba^2+abc+ac^2+bc^2+abc\)
\(=c^2\left(b+a\right)+\left(b^2+3\text{a}b+a^2\right)c+ab^2+a^2b\)
\(=bc^2+ac^2+b^2c+3\text{a}bc+a^2c+ab^2+a^2b\)
\(=\left(c+b+a\right)\left(bc+ac+ab\right)\)
Bài làm
\(A=a\left(b^2+c^2+bc\right)+b\left(c^2+a^2+ac\right)+c\left(a^2+b^2+ab\right)\)
\(A=ab^2+ac^2+bc^2+ba^2+ca^2+cb^2+3abc\)
\(A=ab\left(b+c\right)+a^2\left(b+c\right)+ac\left(b+c\right)+bc\left(a+b+c\right)\)
\(A=\left(b+c\right)\left(ab+a^2+ac\right)+bc\left(a+b+c\right)\)
\(A=\left(a+b+c\right)\left(ab+ac+bc\right)\)
# Học tốt #
Bài làm
\(A=a\left(b^2+c^2+bc\right)+b\left(c^2+a^2+ac\right)+c\left(a^2+b^2+ab\right)\)
\(A=ab^2+ac^2+bc^2+ba^2+ca^2+cb^2+3abc\)
\(A=ab\left(b+c\right)+a^2\left(b+c\right)+ac\left(b+c\right)+bc\left(a+b+c\right)\)
\(A=\left(b+c\right)\left(ab+a^2+ac\right)+bc\left(a+b+c\right)\)
\(A=\left(a+b+c\right)\left(ab+ac+bc\right)\)
# Học tốt #
\(\left(a^2+b^2+ab\right)^2-a^2b^2-b^2c^2-c^2a^2=\left(a^2+b^2+ab-ab\right)\left(a^2+b^2+2ab\right)-c^2\left(a^2+b^2\right)\)
\(=\left(a^2+b^2\right)\left(a+b\right)^2-c^2\left(a^2+b^2\right)=\left(a^2+b^2\right)\left(a+b-c\right)\left(a+b+c\right)\)
A= bc(a+d)(b-c) +ac(b+d)(c-a) + ab(c+d)(a-b)
A= bc(ab+ bd -ac -dc ) + ac(bc+cd -ab-ad )+ab(ac+ad-bc-bd)
A=(ab²c + b²cd -abc² -bdc² ) + (abc² + adc² -a²bc -a²cd ) + (a²bc + a²bd - ab²c -ab²d)
A= (ab²c + cb²d -ab²c-ab²d) + (c²ab -abc² -bdc² +adc² ) + ( a²bd +a²bc -a²bc -a²cd)
A= a²(bd-cd) + b²(cd-ad) + c²(ad-bd)
A=a²d(b-c) + b²d(c-a) + c²d(a-b)
A=d(a²b-a²c + b²c-b²a +c²a-c²b)
A=d[b(a²-c²) + c(b²-a²) + a(c² - b²)]
\(\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)
\(=\left(a+b+c\right)\left(ab+bc\right)+\left(a+b+c\right)ac-abc\)
\(=\left(ab+b^2+bc\right)\left(a+c\right)+\left(a+c\right)ac+abc-abc\)
\(=\left(a+c\right)\left(ab+b^2+bc+ac\right)\)
\(=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
\(\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)
\(=\left(a+b+c\right)\left(ab+bc\right)+\left(a+b+c\right)ac-abc\)
\(=\left(ab+b^2+bc\right)\left(a+c\right)+\left(a+c\right)ac+abc-abc\)
\(=\left(a+c\right)\left(ab+b^2+bc+ac\right)\)
\(=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
phân tích đa thức thành nhân tử
\(ab.\left(a+b\right)+bc.\left(b+c\right)+ac.\left(c+a\right)+2abc\)
\(ab\left(a+b\right)+bc\left(b+c\right)+ac\left(a+c\right)+2abc\)
\(=ab\left(a+b\right)+b^2c+bc^2+a^2c+ac^2+2abc\)
\(=ab\left(a+b\right)+\left(ac^2+bc^2\right)+\left(a^2c+2abc+b^2c\right)\)
\(=ab\left(a+b\right)+c^2\left(a+b\right)+c\left(a^2+2ab+b^2\right)\)
\(=ab\left(a+b\right)+c^2\left(a+b\right)+c\left(a+b\right)^2\)
\(=ab\left(a+b\right)+c^2\left(a+b\right)+\left(ac+bc\right)\left(a+b\right)\)
\(=\left(a+b\right)\left(ab+c^2+ac+bc\right)\)
\(=\left(a+b\right)\left[\left(ab+ac\right)+\left(c^2+bc\right)\right]\)
\(=\left(a+b\right)\left[a\left(b+c\right)+c\left(b+c\right)\right]\)
\(=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
\(=a\left(ba+b^2+ca-c^2\right)\)\(-bc\left(b+c\right)\)
\(=a\left(a\left(b+c\right)+\left(b+c\right)\left(b-c\right)\right)-bc\left(b+c\right)\)
\(=a\left(b+c\right)\left(a+b-c\right)-bc\left(b+c\right)\)
\(=\left(b+c\right)\left(a^2+ab-ac-bc\right)\)
\(=\left(b+c\right)\left(a-c\right)\left(a+b\right)\)