\(a^2\)(1+a)-
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2020

=a^2 + a^3 -b^2 +b^3 -a^2b^2(a+b)

=(a^2-b^2) + (a^3+b^3) -a^2b^2(a+b)

=(a-b)(a+b) + (a+b)(a^2-ab+b^2) - a^2b^2(a+b)

=(a+b)(a-b+a^2-ab+b^2-a^2b^2)

=(a+b) ( (a-ab) -(b-b^2) +a^2(1-b^2) )

=(a+b) ( a(1-b) - b(1-b) + a^2(1-b)(1+b) )

=(a+b) (1-b)(a-b+a^2+a^2b)

17 tháng 3 2020

=(a+b)(1-b) ( a(1+a) -b(1-a^2) )

=(a+b)(1-b) (a(1+a) -b(1-a)(1+a) )

=(a+b)(1-b)(1+a)(a-b+ab)

16 tháng 10 2019

1, a^2 - 4b^2

= a^2 - (2b)^2

=(a-2b)(a+2b)

2,  1/4 a^2 - b^2

=(1/2a)^2 -b^2

=(1/2a-b)(1/2a+b)

16 tháng 10 2019

3,   (a-2b)^2 - (3a+b)^2

=  (a-2b-3a-b)(a-2b+3a+b)

=  (-2a-3b)(4a-b)

21 tháng 7 2019

\(\text{a)}x^3-6x^2+12x-8\)

\(=x^3-2x^2-4x^2+8x+4x-8\)

\(=\left(x^3-2x^2\right)-\left(4x^2-8x\right)+\left(4x-8\right)\)

\(=x^2\left(x-2\right)+4x\left(x-2\right)+4\left(x-2\right)\)

\(=\left(x-2\right)\left(x^2+4x+4\right)\)

\(=\left(x-2\right)\left(x+2\right)^2\)

21 tháng 7 2019

\(\text{b)}8x^2+12x^2y+6xy^2+y^3=\left(2x+y\right)^3\)

Bài 2:

\(\text{a) }x^7+1=\left(x^{\frac{7}{3}}\right)^3+1^3=\left(x^{\frac{7}{3}}+1\right)\left[\left(x^{\frac{7}{3}}\right)^2-x^{\frac{7}{3}}+1\right]=\left(x^{\frac{7}{3}}+1\right)\left(x^{\frac{14}{3}}-x^{\frac{7}{3}}+1\right)\)

\(\text{b) }x^{10}-1=\left(x^5\right)^2-1^2=\left(x^5-1\right)\left(x^5+1\right)\)

Bài 3:

\(\text{a) }69^2-31^2=\left(69-31\right)\left(69+31\right)=38.100=3800\)

\(\text{b) }1023^2-23^2=\left(1023-23\right)\left(1023+23\right)=1000.1046=1046000\)

14 tháng 2 2020

Mạnh dạn đưa pt 1 ẩn về 2 ẩn :)

Đặt \(\frac{x+3}{x-2}=u;\frac{x-3}{x+2}=v\)

Ta có:

\(u^2+6v=7uv\)

\(\Leftrightarrow\left(u-v\right)\left(u-6v\right)=0\)

Xét nốt nha!

14 tháng 2 2020

Câu b là phân tích các kiểu ra dạng như thế này nhé !

\(\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)

Hoặc là bạn dựa vào đó mà phân tích đến cái A là Ok

14 tháng 10 2020

a) \(x^{m+2}-2x^m=x^m\left(x^2-2\right)\)

b) \(x^{k+1}-x^{k+2}=x^{k+1}\left(1-x\right)\)

14 tháng 10 2020

a) xm+2 - 2xm = xm.x2 + 2.xm = xm( x2 - 2 ) = xm( x - √2 )( x + √2 )

b) xk+1 - xk+2 = xk+1 - xk+1.x = xk+1( 1 - x )

??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????

8 tháng 10 2018

a) \(x^2-y^2-x-y\)

\(=\left(x^2-y^2\right)-\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y\right)-\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y-1\right)\)

b) \(x^2-y^2+2yz-z^2\)

\(=x^2-\left(y^2-2yz+z^2\right)\)

\(=x^2-\left(y-z\right)^2\)

\(=\left(x-y+z\right)\left(x+y-z\right)\)

20 tháng 1 2016

\(\left(a-b-c\right)^2\)

7 tháng 3 2020

Câu 1:

Ta có \(x^3+3x-5=x^3+2x+x-5=\left(x^2+2\right)x+x-5\)

để giá trị của đa thức \(x^3+3x-5\)chia hết cho giá trị của đa thức \(x^2+2\)

thì \(x-5⋮x^2+2\Rightarrow\left(x-5\right)\left(x+5\right)⋮x^2+2\Rightarrow x^2-25⋮x^2+2\)

\(\Leftrightarrow x^2+2-27⋮x^2+2\Rightarrow27⋮x^2+2\)

\(\Leftrightarrow x^2+2\inƯ\left(27\right)\)do \(x^2+2\inℤ,\forall x\inℤ\)

mà \(x^2+2\ge2,\forall x\inℤ\)

\(\Rightarrow x^2+2\in\left\{3;9;27\right\}\)\(\Leftrightarrow x^2\in\left\{1;7;25\right\}\)

mà \(x^2\)là số chính phương \(\forall x\inℤ\)

\(\Rightarrow x^2\in\left\{1;25\right\}\Leftrightarrow x\in\left\{\pm1;\pm5\right\}\)

**bạn nhớ thử lại nhé
\(KL...\)

7 tháng 3 2020

Bạn Minh Tâm ơi giá trị \(\pm1\)sai rồi

Gửi câu trả lời của bạn

Chưa có ai trả lời câu hỏi này, hãy gửi một câu trả lời để giúp ʚTrần Hòa Bìnhɞ giải bài toán này.
                  
 
21 tháng 10 2019

Bài 1

\(a,5x^2-10xy+5y^2\)

\(=5\cdot\left(x^2-2xy+y^2\right)\)

\(=5\cdot\left(x-y\right)^2\)

\(b,x^2-y^2+6y-9\)

\(=x^2-\left(y^2-6y+9\right)\)

\(=x^2-\left(y-3\right)^2\)

\(=\left(x-y+3\right)\cdot\left(x+y-3\right)\)

\(c,3x^4-75x^2y^2\)

\(=3x^2\cdot\left(x^2-25y^2\right)\)

\(=3x^2\cdot\left(x-5y\right)\cdot\left(x+5y\right)\)

\(d,x^4y+xy^4\)

\(=xy\left(x^3+y^3\right)\)

\(=xy\cdot\left(x+y\right)\cdot\left(x^2-xy+y^2\right)\)