Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = (n2 - 15)2 + 64
A = n4 - 30n2 + 225 + 64
A = n4 - 30n2 + 289
\(\left(x^2+x\right)^2-2\left(x^2+x\right)-15\)
\(=\left(x^2+x\right)^2+3\left(x^2+x\right)-5\left(x^2+x\right)-15\)
\(=\left(x^2+x\right)\left(x^2+x+3\right)-5\left(x^2+x+3\right)\)
\(=\left(x^2+x-5\right)\left(x^2+x+3\right)\)
1. \(B=\left(x-2\right)\left(x+2\right)\left(x+3\right)-\left(x+1\right)^3\)
\(=\left(x^2-4\right)\left(x+3\right)-\left(x^3+3x^2+3x+1\right)\)
\(=x^3+3x^2-4x-12-x^3-3x^2-3x-1\)
\(=-7x-13\)
2. \(64-x^2-y^2+2xy=64-\left(x^2+y^2-2xy\right)\)
\(=64-\left(x-y\right)^2=\left(8+x-y\right)\left(8-x+y\right)\)
3. \(2x^3-x^2+2x-1=0\)
\(\Leftrightarrow x^2.\left(2x-1\right)+\left(2x-1\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x^2+1\right)=0\)
Vì \(x^2\ge0\)\(\Rightarrow x^2+1>0\)
\(\Rightarrow2x-1=0\)\(\Rightarrow2x=1\)\(\Rightarrow x=\frac{1}{2}\)
Vậy \(x=\frac{1}{2}\)
Bài 1.
B = ( x - 2 )( x + 2 )( x + 3 ) - ( x + 1 )3
= ( x2 - 4 )( x + 3 ) - ( x3 + 3x2 + 3x + 1 )
= x3 + 3x2 - 4x - 12 - x3 - 3x2 - 3x - 1
= -7x - 13
Bài 2.
64 - x2 - y2 + 2xy
= 64 - ( x2 - 2xy + y2 )
= 82 - ( x - y )2
= ( 8 - x + y )( 8 + x - y )
Bài 3.
2x3 - x2 + 2x - 1 = 0
<=> ( 2x3 - x2 ) + ( 2x - 1 ) = 0
<=> x2( 2x - 1 ) + 1( 2x - 1 ) = 0
<=> ( 2x - 1 )( x2 + 1 ) = 0
<=> \(\orbr{\begin{cases}2x-1=0\\x^2+1=0\end{cases}}\Leftrightarrow x=\frac{1}{2}\)( vì x2 + 1 ≥ 1 > 0 ∀ x )
\(64-27x^3=4^3-\left(3x\right)^3=\left(4-3x\right)\left(16+12x+9x^2\right)\)
Đặt n^2 + 2n + 1= a, ta được:
(a - 1)(a + 1) +1= a^2 - 1 + 1= a^2=(n^2 + 2n +1)^2
=(n + 1)^4
Đặt a=x2+3x+5
ta có \(8a^2+7a-15\)
\(=8a^2-8a+15a-15=8a\left(a-1\right)+15\left(a-1\right)\)
\(=\left(8a+15\right)\left(a-1\right)\)
Trả lại biến
\(\left(8x^2+24x+40+15\right)\left(x^2+3x+5-1\right)\)
\(=\left(8x^2+24x+55\right)\left(x^2+3x+4\right)\)
\(\left(x^2+x\right)^2-2\left(x^2+x\right)-15\)
\(=\left(x^2+x\right)^2-5\left(x^2+x\right)+3\left(x^2+x\right)-15\)
\(=\left(x^2+x\right)\left(x^2+x-5\right)+3\left(x^2+x-5\right)\)
\(=\left(x^2+x-5\right)\left(x^2+x+3\right)\)
\(\left(x^2+2x\right)^2+9x^2+18x+20\)
\(=\left(x^2+2x\right)^2+9\left(x^2+2x\right)+20\)
\(=\left(x^2+2x\right)^2+5\left(x^2+2x\right)+4\left(x^2+2x\right)+20\)
\(=\left(x^2+2x\right)\left(x^2+2x+5\right)+4\left(x^2+2x+5\right)\)
\(=\left(x^2+2x+5\right)\left(x^2+2x+4\right)\)
\(\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)
\(=\left(a+b+c\right)\left(ab+bc\right)+\left(a+b+c\right)ac-abc\)
\(=\left(ab+b^2+bc\right)\left(a+c\right)+\left(a+c\right)ac+abc-abc\)
\(=\left(a+c\right)\left(ab+b^2+bc+ac\right)\)
\(=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
\(\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)
\(=\left(a+b+c\right)\left(ab+bc\right)+\left(a+b+c\right)ac-abc\)
\(=\left(ab+b^2+bc\right)\left(a+c\right)+\left(a+c\right)ac+abc-abc\)
\(=\left(a+c\right)\left(ab+b^2+bc+ac\right)\)
\(=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
A = (n2 -15)2 + 64
= (n2- 15)2 + 82
= (n2 - 15 + 8).(n2 - 15 - 8)
=(n2 -7).(n2 - 23)
\(A=\left(n^2-15\right)^{2+64}\)
\(A=\left(n^2-15\right)^2+8^2\)
\(A=\left(n^2-15+8\right).\left(n^2-15-8\right)\)
\(A=\left(n^2-7\right).\left(n^2-23\right)\)
~Study well~ :)