K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2016

X2+4xy-21y2=(x2+4xy+4y2)-25y2=(x+2)2-(5y)2=(x+2-5y)(x+2+5y)

5x2+6xy+y2=9x2+6xy+y2-4x2=(3x+y)2-4x2=(3x+y+2x)(3x+y-2x)

(x-y)2+4(x-y)-12=(x-y+2)2-16=(x-y+2+4)(x-y+2-4)

x2-7xy+10y2=x2-7xy+\(\frac{49y^2}{4}-\frac{9y^2}{4}\)\(\left(x-\frac{7}{2}\right)^2-\left(\frac{3y}{2}\right)^2\)=\(\left(x-\frac{7}{2}-\frac{3y}{2}\right)\left(x-\frac{7}{2}+\frac{3y}{2}\right)\)

x2+2xy-15y2=(x+y)2-16y2=(x+y-4y)(x+y+4y

19 tháng 8 2015

 

a) 5x^2 + 6xy + y^2

=5x2+5xy+xy+y2

=5x.(x+y)+y.(x+y)

=(x+y)(5x+y)

 

b) x^2 + 2xy - 15y^2.

=x2-3xy+5xy-15y2

=x.(x-3y)+5y.(x-3y)

=(x-3y)(x+5y)

 

c) (x-y)^2 + 4(x-y) - 12

=(x-y)2+4(x-y)+4-16

=(x-y+2)2-16

=(x-y+2-4)(x-y+2+4)

=(x-y-2)(x-y+6)

 

d) x^3 - 2x - 4.

=x3+2x2+2x-2x2-4x-4

=x.(x2+2x+2)-2.(x2+2x+2)

=(x2+2x+2)(x-2)

 

19 tháng 7 2019

a) \(x^2+4x-y^2+4\)

\(=\left(x+2\right)^2-y^2\)

\(=\left(x+2-y\right)\left(x+2+y\right)\)

19 tháng 7 2019

c) \(x^2-2xy+y^2-z^2+2zt-t^2\)

\(=\left(x-y\right)^2-\left(z-t\right)^2\)

\(=\left(x-y-z+t\right)\left(x-y+z-t\right)\)

19 tháng 9 2018

7(x - 3) - x(3 - x)

= (x - 3)(7 + x)

chỉ bt có v mà k bt có đúng k 

19 tháng 9 2018

1 ) 7 ( x - 3 ) - x ( 3 - x ) 

= 7 ( x - 3 ) + x ( x - 3 )

= ( x - 3 ) ( 7 + x )

2 ) 4x2 - 6x + 3 - 2x

= 4x2 - 2x - 6x + 3

= 2x ( 2x - 1 ) - 3 ( 2x - 1 )

= ( 2x - 1 ) ( 2x - 3 )

3 ) ( 4 - x ) - 4x + x2

= ( 4 - x ) - x ( 4 - x )

= ( 4 - x ) (  1 - x )

4 ) x2 - 2xy + y2

= ( x - y )2

31 tháng 7 2017

1) \(\left(x^2+x+1\right)\left(x^2+x+2\right)-12=x^4+x^3+2x^2+x^3+x^2+2x+x^2+x+2-12\)

\(=x^4+2x^3+4x^2+3x-10=\left(x^4+2x^3\right)+\left(4x^2+8x\right)+\left(-5x-10\right)\)

\(=x^3.\left(x+2\right)+4x.\left(x+2\right)-5.\left(x+2\right)=\left(x+2\right)\left(x^3+4x-5\right)\)

\(=\left(x+2\right)\left(x^3-x^2+x^2-x+5x-5\right)=\left(x+2\right)\left(x-1\right)\left(x^2+x+5\right)\)

2) \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24=\left[\left(x+2\right)\left(x+5\right)\right].\left[\left(x+3\right)\left(x+4\right)\right]-24\)

\(=\left(x^2+7x+10\right).\left(x^2+7x+12\right)-24\)

Đặt  \(a=x^2+7x+10\) thì ta có :\(a.\left(a+2\right)-24=a^2+2a-24=\left(a^2+2a+1\right)-25=\left(a+1\right)^2-5^2\)

\(=\left(a+1+5\right)\left(a+1-5\right)=\left(a+6\right)\left(a-4\right)\)

Thay a , ta có :

\(\left(x^2+7x+10+6\right)\left(x^2+7x+10-4\right)=\left(x^2+7x+16\right).\left(x^2+x+6x+6\right)\)

\(=\left(x^2+7x+16\right)\left(x+1\right)\left(x+6\right)\)

12 tháng 8 2017

\(=\left(x^2-2xy+y^2\right)+\left(x-y\right)=\left(x-y\right)^2+\left(x-y\right)=\left(x-y\right)\left(x-y+1\right)\)

26 tháng 12 2021

a: =5(2x+3y)

d: =(x+1-y)(x+1+y)

7 tháng 7 2016

a) \(x^4+2x^3-4x-4=\left[\left(x^2\right)^2-4\right]+\left(2x^3-4x\right)\)

\(=\left(x^2+2\right)\left(x^2-2\right)+2x\left(x^2-2\right)\)

\(=\left(x^2+2+2x\right)\left(x^2-2\right)\)

7 tháng 7 2016

a) \(x^4+2x^3-4x-4=\left(x^4+2x^3+x^2\right)-\left(x^2+4x+4\right)=x^2\left(x+1\right)^2-\left(x+2\right)^2\)

\(=\left(x^2+x-x-2\right)\left(x^2+x+x+2\right)=\left(x^2-2\right)\left(x^2+2x+2\right)\)

b) \(x^2+y^2-x^2y^2+xy-x-y=\left(x^2-x^2y^2\right)+\left(y^2-y\right)+\left(xy-x\right)\)

\(=x^2\left(1-y\right)\left(1+y\right)-y\left(1-y\right)-x\left(1-y\right)=\left(1-y\right)\left(x^2+x^2y-y-x\right)\)

\(=\left(1-y\right)\left[\left(x-1\right)x+y\left(x-1\right)\left(x+1\right)\right]=\left(1-y\right)\left(x-1\right)\left(x+xy+y\right)\)

c) Không phân tích được.

22 tháng 10 2023

a: x^2+4xy-21y^2

\(=x^2+7xy-3xy-21y^2\)

\(=x\left(x+7y\right)-3y\left(x+7y\right)\)

\(=\left(x+7y\right)\left(x-3y\right)\)

b: \(5x^2+6xy+y^2\)

\(=5x^2+5xy+xy+y^2\)

=5x(x+y)+y(x+y)

=(x+y)(5x+y)

c: \(x^2+2xy-15y^2\)

\(=x^2+5xy-3xy-15y^2\)

=x(x+5y)-3y(x+5y)

=(x+5y)(x-3y)

d: \(x^2-7xy+10y^2\)

\(=x^2-2xy-5xy+10y^2\)

=x(x-2y)-5y(x-2y)

=(x-2y)(x-5y)

22 tháng 10 2023

a) \(x^2+4xy-21y^2\)

\(=x^2+7xy-3xy-21y^2\)

\(=x\left(x+7y\right)-3y\left(x+7y\right)\)

\(=\left(x+7y\right)\left(x-3y\right)\)

b) \(5x^2+6xy+y^2\)

\(=5x^2+5xy+xy+y^2\)

\(=5x\left(x+y\right)+y\left(x+y\right)\)

\(=\left(5x+y\right)\left(x+y\right)\)

c) \(x^2+2xy-15y^2\)

\(=x^2+5xy-3xy-15y^2\)

\(=x\left(x+5y\right)-3y\left(x+5y\right)\)

\(=\left(x+5y\right)\left(x-3y\right)\)

d) \(x^2-7xy+10y^2\)

\(=x^2-2xy-5xy+10y^2\)

\(=x\left(x-2y\right)-5y\left(x-2y\right)\)

\(=\left(x-5y\right)\left(x-2y\right)\)