\(96x^2-208x-132xy+148y+45y^2+96\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2019

\(96x^2-208x-132xy+148y+45y^2+96.\)

\(=\left(45y^2-60xy+40y\right)+\left(-72xy+96x^2-64x\right)+\left(108y-144x+96\right)\)

\(=5y\left(9y-12x+8\right)-8x\left(9y-12x+8\right)+12\left(9y-12x+8\right)\)

\(=\left(9y-12x+8\right)\left(5y-8x+12\right)\)

26 tháng 8 2020

Bài làm:

1) Ta có: \(2x^2+5xy+2y^2\)

\(=\left(2x^2+4xy\right)+\left(xy+2y^2\right)\)

\(=2x\left(x+2y\right)+y\left(x+2y\right)\)

\(=\left(2x+y\right)\left(x+2y\right)\)

2) Ta có: \(2x^2+2xy-4y^2\)

\(=\left(2x^2-2xy\right)+\left(4xy-4y^2\right)\)

\(=2x\left(x-y\right)+4y\left(x-y\right)\)

\(=2\left(x+2y\right)\left(x-y\right)\)

26 tháng 8 2020

\(1)2x^2+5xy+2y^2=2x^2+4xy+xy+2y^2=\left(2x^2+4xy\right)+\left(xy+2y^2\right)=2x\left(x+2y\right)+y\left(x+2y\right)=\left(2x+y\right)\left(x+2y\right)\)\(2)2x^2+2xy-4y^2=2x^2+4xy-2xy-4y^2=\left(2x^2-2xy\right)+\left(4xy-4y^2\right)=2x\left(x-y\right)+4y\left(x-y\right)=\left(2x+4y\right)\left(x-y\right)\)

26 tháng 8 2020

Bài làm:

Ta có: \(2x^2-3xy-2y^2\)

\(=\left(2x^2-4xy\right)+\left(xy-2y^2\right)\)

\(=2x\left(x-2y\right)+y\left(x-2y\right)\)

\(=\left(2x+y\right)\left(x-2y\right)\)

26 tháng 8 2020

\(2x^2-3xy-2y^2\)

\(=\left(2x^2-4xy\right)+\left(xy-2y^2\right)\)

\(=2x\left(x-2y\right)+y\left(x-2y\right)\)

\(=2x\left(x-2y\right)+y\left(x-2y\right)\)

8 tháng 10 2017

\(4x^2-6x=2x\left(2x-3\right)\)

8 tháng 10 2017

Phân tích đa thức thành nhân tử

4x2−6x=2x(2x-3)

hãy k nếu bạn thấy đây là câu tl đúng :)

23 tháng 9 2017

6x + x^2 = x ( 6+x)

23 tháng 9 2017

=x(6+x)

5 tháng 1 2017

Theo bài ra , ta có : 

4x2 - 4xy + 8y2 

= (2x)2 - 2.2xy + y2 + 7y2 

= (2x + y)2 + 7y2 

Chúc bạn hôc tốt =))

23 tháng 9 2019

\(x^5+x^4+2\)

\(=x^5+x^4+x^2-x^2+1+1\)

\(=\left(x^5-x^2\right)+\left(x^4+x^2+1\right)\)

\(=\left(x^5-x^2\right)+\left(x^4+2x^2-x^2+1\right)+1\)

\(=x^2\left(x^3-1\right)+\left(x^4+2x^2-x^2+1\right)+1\)

\(=x^2\left(x-1\right)\left(x^2+x+1\right)+\left(\left(x^2+1\right)^2-x^2\right)+1\)

\(=x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+1+x\right)\cdot\left(x^2+1-x\right)+1\)

\(=\left(x^3-x^2\right)\left(x^2+x+1\right)+\left(x^2+1+x\right)\cdot\left(x^2+1-x\right)+1\)

\(=\left(x^2+x+1\right)\left(x^3-x^2+x^2+1-x\right)+1\)

\(=\left(x^2+x+1\right)\left(x^3+1-x\right)+1\)