Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(8x^2-23x-3=8x^2+x-24x-3\)
\(=\left(8x^2+x\right)-\left(24x+3\right)\)
\(=x\left(8x+1\right)-3\left(8x+1\right)\)
\(=\left(8x+1\right)\left(x-3\right)\)
Ta có: \(-8x^2+23x+3\)
\(=\left(-8x^2+24x\right)-\left(x-3\right)\)
\(=-8x\left(x-3\right)-\left(x-3\right)\)
\(=\left(-8x-1\right)\left(x-3\right)\)
\(=\left(3-x\right)\left(8x+1\right)\)
\(-8x^2+23x+3\)
\(=-\left(8x^2-23x-3\right)\)
\(=-\left(8x^2-24x+x-3\right)\)
\(=-\left[8x\left(x-3\right)+\left(x-3\right)\right]\)
\(=-\left(8x+1\right)\left(x-3\right)\)
a)6x2+23x-18
=6x2-4x+27x-18
=2x(3x-2)+9(3x-2)
=(2x+9)(3x-2)
b)x4+324
=(x4+182+36x2)-36x2
=(x2+18)2-36x2
=(x2-6x+18)(x2+6x+18)
a,6x2+23x-18
=6x2+27x-4x-18
=(6x2+27x)-(4x+18)
=3x(2x+9)-2(2x-9)
=(3x-2)(2x+9)
\(A=x^3+9x^2+23x+15=x^2\left(x+1\right)+8x\left(x+1\right)+15\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+8x+15\right)=\left(x+1\right)\left[x\left(x+3\right)+5\left(x+3\right)\right]\)
\(=\left(x+1\right)\left(x+3\right)\left(x+5\right)⋮16\)
b, Nếu x là số chẵn thì A là số lẻ nên không chia hết cho 16
- Nếu x là số lẻ thì đặt x = 2k + 1 \(\left(k\in Z\right)\)
Ta có: \(A=\left(x+1\right)\left(x+3\right)\left(x+5\right)=\left(2k+1+1\right)\left(2k+1+3\right)\left(2k+1+5\right)\)
\(=\left(2k+2\right)\left(2k+4\right)\left(2k+6\right)=8\left(k+1\right)\left(k+2\right)\left(k+3\right)\)
Vì k + 1, k + 2 và k + 3 là 3 số nguyên liên tiếp nên
\(\left(k+1\right)\left(k+2\right)\left(k+3\right)⋮2\Rightarrow A=8\left(k+1\right)\left(k+2\right)\left(k+3\right)⋮16\)
Vậy với x là số lẻ \(\left(x\in Z\right)\) thì \(A⋮16\)
=X4-3X3 +6X3-18X2+11X2-33X+6X-18
=(X-3)(X3+6X2+11X+6)
=(X-3)(X+3)(X+1)(X+2)
\(x^4+3x^3-7x^2-27x-18.\)
\(=\left(x^4-9x^2\right)+\left(3x^3-27x\right)+\left(2x^2-18\right)\)
\(=x^2\left(x-3\right)\left(x+3\right)+3x\left(x-3\right)\left(x+3\right)+2\left(x-3\right)\left(x+3\right).\)
\(=\left(x-3\right)\left(x+3\right)\left(x^2+3x+2\right)\)
\(=\left(x-3\right)\left(x+3\right)\left(x^2+x+2x+2\right)\)
\(=\left(x-3\right)\left(x+3\right)\left(x+1\right)\left(x+2\right).\)
\(x^3+6x^2+11x+6=x^3+x^2+5x^2+5x+6x+6\)
\(=x^2\left(x+1\right)+5x\left(x+1\right)+6\left(x+1\right)=\left(x+1\right)\left(x^2+5x+6\right)\)
\(=\left(x+1\right)\left(x^2+2x+3x+6\right)=\left(x+1\right)\left[x\left(x+2\right)+3\left(x+2\right)\right]\)
\(=\left(x+1\right)\left(x+2\right)\left(x+3\right)\)
\(4x^3-13x^2+9x-18 \)
\(=4x^2\left(x-3\right)-x\left(x-3\right)+6\left(x-3\right)\)
\(=\left(x-3\right)\left(4x^2-x+6\right)\)
\(x^2-5x+6\)
\(=x^2-5x+\frac{25}{4}-\frac{1}{4}\)
\(=\left(x-\frac{5}{2}\right)^2-\left(\frac{1}{2}\right)^2\)
\(=\left(x-\frac{5}{2}-\frac{1}{2}\right)\left(x-\frac{5}{2}+\frac{1}{2}\right)\)
\(=\left(x-3\right)\left(x-2\right)\)
\(x^2-5x+6 \)
= \(x^2-2x-3x+6\)
= \(\left(x^2-2x\right)-\left(3x-6\right)\)
= \(x\left(x-2\right)-3\left(x-2\right)\)
= \(\left(x-2\right)\left(x-3\right)\)