K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26) Ta có: \(x^4-20x^2+64\)

\(=x^4-16x^2-4x^2+64\)

\(=x^2\left(x^2-16\right)-4\left(x^2-16\right)\)

\(=\left(x-4\right)\left(x+4\right)\left(x-2\right)\left(x+2\right)\)

27) Ta có: \(4x^3+6x^2+3x+1\)

\(=4x^3+4x^2+2x^2+2x+x+1\)

\(=4x^2\left(x+1\right)+2x\left(x+1\right)+\left(x+1\right)\)

\(=\left(x+1\right)\left(4x^2+2x+1\right)\)

28) Ta có: \(x^3-6x^2+12x-9\)

\(=x^3-3x^2-3x^2+9x+3x-9\)

\(=x^2\cdot\left(x-3\right)-3x\left(x-3\right)+3\left(x-3\right)\)

\(=\left(x-3\right)\left(x^2-3x+3\right)\)

29: Ta có: \(x^4+x^2+1\)

\(=x^4+2x^2+1-x^2\)

\(=\left(x^2+1\right)^2-x^2\)

\(=\left(x^2-x+1\right)\left(x^2+x+1\right)\)

9 tháng 8 2021

26) Ta có: x4−20x2+64x4−20x2+64

=x4−16x2−4x2+64=x4−16x2−4x2+64

=x2(x2−16)−4(x2−16)=x2(x2−16)−4(x2−16)

=(x−4)(x+4)(x−2)(x+2)=(x−4)(x+4)(x−2)(x+2)

27) Ta có: 4x3+6x2+3x+14x3+6x2+3x+1

=4x3+4x2+2x2+2x+x+1=4x3+4x2+2x2+2x+x+1

=4x2(x+1)+2x(x+1)+(x+1)=4x2(x+1)+2x(x+1)+(x+1)

=(x+1)(4x2+2x+1)=(x+1)(4x2+2x+1)

28) Ta có: x3−6x2+12x−9x3−6x2+12x−9

=x3−3x2−3x2+9x+3x−9=x3−3x2−3x2+9x+3x−9

=x2⋅(x−3)−3x(x−3)+3(x−3)=x2⋅(x−3)−3x(x−3)+3(x−3)

=(x−3)(x2−3x+3)=(x−3)(x2−3x+3)

29: Ta có: x4+x2+1x4+x2+1

=x4+2x2+1−x2=x4+2x2+1−x2

=(x2+1)2−x2=(x2+1)2−x2

=(x2−x+1)(x2+x+1)

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

BD=CE
\(\widehat{ABD}=\widehat{ACE}\)

Do đó: ΔABD=ΔACE

Suy ra: AB=AC

hay ΔABC cân tại A

b: XétΔABC có 

AD là đường cao

CH là đường cao

AD cắt CH tại D

Do đó: D là trực tâm của ΔABC

=>BD vuông góc với AC

23 tháng 3 2017

\(\left\{{}\begin{matrix}\widehat{CBA}< 135\Rightarrow\widehat{ABD}>45\Rightarrow\widehat{BAD}< 45\Rightarrow BD< DA\\\widehat{ACD}< 45\Rightarrow\widehat{CAD}>45\Rightarrow AD< CD\\\end{matrix}\right.\)

24 tháng 3 2017

Làm toán hình thì phải lập luận rõ ràng, trong toán hình cái điểm lập luận là cao nhất, nếu không có thì 0 điểm, chế làm như vậy có phải đẩy người ta xuống 0 điểm không? Làm ơn bỏ ngay cái ngoặc tròn (và) của lớp 8 đi!

23 tháng 4 2017

Giải:

Do \(\left(2016a+13b-1\right)\left(2016^a+2016a+b\right)\) \(=2015\)

Nên \(2016a+13b-1\)\(2016^a+2016a+b\) là 2 số lẻ \((*)\)

Ta xét 2 trường hợp:

Trường hợp 1: Nếu \(a\ne0\) thì \(2016^a+2016a\) là số chẵn

Do \(2016^a+2016a+b\) lẻ \(\Rightarrow b\) lẻ

Với \(b\) lẻ \(\Rightarrow13b-1\) chẵn do đó \(2016a+13b-1\) chẵn (trái với \((*)\))

Trường hợp 2: Nếu \(a=0\) thì:

\(\left(2016.0+13b-1\right)\left(2016^0+2016.0+b\right)\) \(=2015\)

\(\Leftrightarrow\left(13b-1\right)\left(b+1\right)=2015=1.5.13.31\)

Do \(b\in N\Rightarrow\left(13b-1\right)\left(b+1\right)=5.403=13.155\) \(=31.65\)

\(13b-1>b+1\)

\(*)\) Nếu \(b+1=5\Rightarrow b=4\Rightarrow13b-1=51\) (loại)

\(*)\) Nếu \(b+1=13\Rightarrow b=12\Rightarrow13b-1=155\) (chọn)

\(*)\) Nếu \(b+1=31\Rightarrow b=30\Rightarrow13b-1=389\) (loại)

Vậy \(\left(a,b\right)=\left(0;12\right)\)

b: |2x-1|<5

=>2x-1>-5 và 2x-1<5

=>2x>-4 và 2x<6

=>-2<x<3

mà x là số nguyên dương

nên \(x\in\left\{1;2\right\}\)

19 tháng 10 2017

chẳng nhìn thấy j cả!oho Thông cảm mk bị cận!gianroi

15 tháng 2 2017

\(\frac{47}{32}\)

15 tháng 2 2017

bạn làm như thế nào?

18 tháng 9 2017

kẻ đường thẳng OK sao cho OK // a

Ta có góc A+KOA=180o( hai góc trong cùng phía bù nhau)

=> góc KOA=180o-110o=70o

=> góc KOB=140o - 70o = 70o

Mà KOB+B=70o+110o=180o

=> OK//b Mà OK//a; OK//b

=>a//b. tick giùm tui đi, please V_V

1 tháng 3 2017

đề sai sailimdim

1 tháng 3 2017

Từ \(\dfrac{9x}{4}\)=\(\dfrac{16}{x}\)

9x\(^2\)=4*16=69

=>x\(^2\)=69/9=\(\dfrac{64}{9}\)

=>x=\(\dfrac{-8}{3}\)

6 tháng 2 2017

MNE = MPF

MND =MPD

DME = DMF

7 tháng 2 2017

3. Xét tam giác ADM và tam giác AEM có :

góc ADM = góc AEM = 90 độ

Góc BAM = góc CAM (gt)

AM chung

=>Tam giác ADM = tam giác AEm (c.huyền - g.nhọn)

=>MD = ME (cặp cạnh t/ứng )

AD = AE (cặp cạnh t/ứng )

Xét tam giác MDB và tam giác MEC có :

MB = MC (gt)

góc MDB = góc MEC = 90 độ

MD = ME ( câu a)

=>Tam giác MDB = Tam giác MEC (c.huyền-c.g.vuông)

Vì AD + DB = AB

AE + EC = AC

Mà AD = AE

DB = EC

=>AB = AC

Xét tam giác ABM và tam giác ACM có

AM chung

góc BAM = góc CAM (gt)

AB = AC (CMT)

=>Tam giác ABM = Tam giác ACM (c.huyền-g.nhon)

Vậy có 3 cặp tam giác bằng nhau