Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo link này nhé :
https://olm.vn/hoi-dap/detail/11579055142.html
~Study well~
#SJ
\(a,\)\(x^{16}-1\)
\(=\left(x^8+1\right)\left(x^8-1\right)\)
\(=\left(x^8+1\right)\left(x^4+1\right)\left(x^4-1\right)\)
\(=\left(x^8+1\right)\left(x^4+1\right)\left(x^2+1\right)\left(x^2-1\right)\)
\(=\left(x^8+1\right)\left(x^4+1\right)\left(x^2+1\right)\left(x+1\right)\left(x-1\right)\)
(x+y)2-(x+y)-6
=(x+y)2+2.(x+y)-3.(x+y)-6
=(x+y)(x+y+2)-3.(x+y+2)
=(x+y+2)(x+y-3)
\(x^3-7x-6=x^3+3x^2+2x-3x^2-9x-6\)
\(=x\left(x^2+3x+2\right)-3\left(x^2+3x+2\right)\)
\(=\left(x-3\right)\left(x^2+3x+2\right)\)
\(=\left(x-3\right)\left(x^2+2x+x+2\right)\)
\(=\left(x-3\right)\left[x\left(x+2\right)+\left(x+2\right)\right]\)
\(=\left(x-3\right)\left(x+1\right)\left(x+2\right)\)
x-3=0 x=3 | x+1=0 x=-1 | x+2=0 x=-2 |
\(x^6-64x^{12}=\left(x^3\right)^2-\left(8x^6\right)^2=\left(x^3-8x^6\right)\left(x^3+8x^6\right).\)
\(=x^6\left(1-8x^3\right)\left(1+8x^3\right)=x^6\left(1-2x\right)\left(1+2x+4x^2\right)\left(1+2x\right)\left(1-2x+4x^2\right)\)
a, x^2 + 2xy + y^2 - x - y - 12
= (x^2 + 2xy + y^2) - (x + y) - 16 + 4
= (x + y)^2 - 4^2 - (x + y - 4)
= (x + y - 4)(x + y + 4) - (x + y - 4)
= (x + y - 4)(x + y + 4 - 1)
= (x + y - 4)(x + y + 3)
b, x^6 + 27
= (x^2)^3 + 3^3
= (x^2 + 3)[(x^2)^2 - 3x^2 + 3^2]
= (x^2 + 3)(x^4 - 3x^2 + 9)
c, x^7 + x^5 + 1
=x^7 - x^6 + x^5 - x^3 + x^2 + x^6 - x^5 + x^4 - x^2 + x + x^5 - x^4 + x^3 - x + 1
= (x^2 + x + 1)(x^5 - x^4 + x^3 - x+1)
\(\left(x+y\right)^3-1-3xy\left(x+y-1\right)\)
\(=\left(x+y-1\right).\left[\left(x+y\right)^2+x+y+1\right]-3xy\left(x+y-1\right)\)
\(=\left(x+y-1\right)\left[\left(x+y\right)^2+x+y+1-3xy\right]\)
\(=\left(x+y-1\right).\left[x^2+2xy+y^2+x+y+1-3xy\right]\)
\(=\left(x+y-1\right)\left(x^2+y^2-xy+x+y+1\right)\)
Chúc bạn học tốt.
\(\left(x+y\right)^3-1-3xy\left(x+y-1\right)\)
\(\Leftrightarrow\left(x+y-1\right)\left(\left(x+y\right)^2+\left(x+y\right).1+1^2\right)-3xy\left(x+y-1\right)\)
\(\Leftrightarrow\left(x+y-1\right)\left(x^2+2xy+y^2+x+y+1-3xy\right)\)
\(\Leftrightarrow\left(x+y-1\right)\left(x^2-xy+y^2+x+y+1\right)\)
\(x^6-y^6=\left(x^3\right)^2-\left(y^3\right)^2\)
\(=\left(x^3-y^3\right)\left(x^3+y^3\right)\)
\(=\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(x^6-y^6\)\(=\left(x^3\right)^2-\left(y^3\right)^2\)
\(=\left(x^3-y^3\right)\left(x^3+y^3\right)\)
\(=\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2-xy+y^2\right)\)
đúng 100% bài này mik mới vừa làm nhà cô