Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,=x\left(x^2-2x+1-y^2\right)=x\left[\left(x-1\right)^2-y^2\right]=x\left(x-y-1\right)\left(x+y-1\right)\\ 2,=\left(x+y\right)^3\\ 3,=\left(2y-z\right)\left(4x+7y\right)\\ 4,=\left(x+2\right)^2\\ 5,Sửa:x\left(x-2\right)-x+2=0\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
\(x^4+4x^3+2x^2-4x+1\)
\(=x^4+2x^3-x^2+2x^3+4x^2-2x-x^2-2x+1\)
\(=x^2\left(x^2+2x-1\right)+2x\left(x^2+2x-1\right)-\left(x^2+2x-1\right)\)
\(=\left(x^2+2x-1\right)^2\)
#)Giải :
\(x^3-2x-4\)
\(=x^3+2x^2-2x^2+2x-4x-4\)
\(=x^3+2x^2+2x-2x^2-4x-4\)
\(=x\left(x^2+2x+2\right)-2\left(x^2+2x+2\right)\)
\(=\left(x-2\right)\left(x^2+2x+2\right)\)
\(x^4+2x^3+5x^2+4x-12\)
\(=x^4+x^3+6x^2+x^3+x^2+6x-2x^2-2x-12\)
\(=x^2\left(x^2+x+6\right)+x\left(x^2+x+6\right)-2\left(x^2+x+6\right)\)
\(=\left(x^2+x+6\right)\left(x^2+x-2\right)\)
\(=\left(x^2+x+6\right)\left(x-1\right)\left(x+2\right)\)
Câu 1.
Đoán được nghiệm là 2.Ta giải như sau:
\(x^3-2x-4\)
\(=x^3-2x^2+2x^2-4x+2x-4\)
\(=x^2\left(x-2\right)+2x\left(x-2\right)+2\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+2x+2\right)\)
\(1,\\ 1,=15\left(x+y\right)\\ 2,=4\left(2x-3y\right)\\ 3,=x\left(y-1\right)\\ 4,=2x\left(2x-3\right)\\ 2,\\ 1,=\left(x+y\right)\left(2-5a\right)\\ 2,=\left(x-5\right)\left(a^2-3\right)\\ 3,=\left(a-b\right)\left(4x+6xy\right)=2x\left(2+3y\right)\left(a-b\right)\\ 4,=\left(x-1\right)\left(3x+5\right)\\ 3,\\ A=13\left(87+12+1\right)=13\cdot100=1300\\ B=\left(x-3\right)\left(2x+y\right)=\left(13-3\right)\left(26+4\right)=10\cdot30=300\\ 4,\\ 1,\Rightarrow\left(x-5\right)\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\\ 2,\Rightarrow\left(x-7\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=7\\x=-2\end{matrix}\right.\\ 3,\Rightarrow\left(3x-1\right)\left(x-4\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=4\end{matrix}\right.\\ 4,\Rightarrow\left(2x+3\right)\left(2x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)
\(4x^4+4x^3-x^2-x\)
\(=4x^3\left(x+1\right)-x\left(x+1\right)\)
\(=\left(x+1\right)\left(4x^3-x\right)\)
\(=x\left(x+1\right)\left(4x^2-1\right)\)
\(=x\left(x+1\right)\left[\left(2x\right)^2-1\right]\)
\(=x\left(x+1\right)\left(2x+1\right)\left(2x-1\right)\)
(Nhớ k cho mình với nhá!)
\(=1-4x^2-x^3+4x\)
\(=-\left(x-1\right)\left(x^2+x+1\right)-4x\left(x-1\right)\)
\(=\left(x-1\right)\left(-x^2-x-1-4x\right)\)
\(=\left(x-1\right)\left(-x^2-5x-1\right)\)
\(4x\left(x+1\right)^2-5x^2\left(x+1\right)-4\left(x+1\right) =\left(x+1\right)\left[4x\left(x+1\right)-5x^2-4\right]=\left(x+1\right)\left(4x^2+4x-5x^2-4\right)=\left(x+1\right)\left(-x^2+4x-4\right)=-\left(x+1\right)\left(x-2\right)^2\)
\(4x\left(x+1\right)^2-5x^2\left(x+1\right)-4\left(x+1\right)\)
\(=4x\left(x^2+2x+1\right)-5x^2\left(x+1\right)-4\left(x+1\right)\)
\(=4x^3+8x^2+4x-5x^3-5x-4x-4\)
\(=-x^3+8x^2-5x-4\)