K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2020

\(x^3-64x^2=x^2.\left(x-64\right)\)

12 tháng 10 2020

\(x^3-64x^2=x^2.\left(x-64\right)\)

24 tháng 8 2016

\(x^3-3x^2+3x-1-y^3\)

\(=\left(x-1\right)^3-y^3\)

\(=\left(x-1-y\right)\left[\left(x-1\right)^2+y\left(x-1\right)+y^2\right]\)

\(=\left(x-y-1\right)\left[\left(x-1\right)\left(x-1+y\right)+y^2\right]\)

24 tháng 8 2016

\(x^3-3x^2+3x-1-y^3\\ =\left(x-1\right)^3-y^3\\ =\left(x-1-y\right)\text{[ (x-1)^2+y(x-1)+y^2}\)

\(=\left(x-y-1\right)\left[\left(x-1\right)\left(x-1+y\right)+y^2\right]\)

2 tháng 10 2016

Ta có :

\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1\)

\(=\left[\left(x+1\right)\left(x+4\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]+1\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\)

Đặt \(x^2+5x+5=t\)

=> Đa thức trở thành 

\(\left(t-1\right)\left(t+1\right)+1\)

\(=t^2-1+1\)

\(=t^2\)

Thay vào ta được 

Đt=\(\left(x^2+5x+5\right)^2\)

2 tháng 10 2016

\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1\)

\(=\left[\left(x+1\right)\left(x+4\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]+1\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\)                 (1)

Đặt \(x^2+5x+5=t\)  thì (1)

\(\Leftrightarrow\left(t-1\right)\left(t+1\right)+1=t^2-1+1=t^2=\left(x^2+5x+5\right)^2\)

14 tháng 10 2020

\(x^3+9x^2+26x+24=\left(x^2+7x+12\right)\left(x+2\right)=\left(x+3\right)\left(x+4\right)\left(x+2\right)\)

14 tháng 10 2020

Ta có: \(x^3+9x^2+26x+24\)

\(=\left(x^3+2x^2\right)+\left(7x^2+14x\right)+\left(12x+24\right)\)

\(=x^2\left(x+2\right)+7x\left(x+2\right)+12\left(x+2\right)\)

\(=\left(x+2\right)\left(x^2+7x+12\right)\)

\(=\left(x+2\right)\left[\left(x^2+3x\right)+\left(4x+12\right)\right]\)

\(=\left(x+2\right)\left[x\left(x+3\right)+4\left(x+3\right)\right]\)

\(=\left(x+2\right)\left(x+3\right)\left(x+4\right)\)

27 tháng 10 2016

\(x^4+2x^2-24\)

Đặt \(t=x^2\) ta có:

\(t^2+2t-24=t^2-4t+6t-24\)

\(=t\left(t-4\right)+6\left(t-4\right)\)

\(=\left(t+6\right)\left(t-4\right)\)

\(=\left(x^2+6\right)\left(x^2-4\right)\)

\(=\left(x-2\right)\left(x+2\right)\left(x^2+6\right)\)

Ta có: (x+2)(x+4)(x+6)(x+8)+16

=[(x+2)(x+8)]+[(x+4)(x+6)]+16

\(=\left[x^2+10x+16\right]\left[x^2+10x+24\right]+16\) (1)

Đặt \(x^2+10x+16=t\), khi đó (1) trở thành:

\(t\left(t+8\right)+16=t^2+8t+16=\left(t+4\right)^2\)

Thay \(x^2+10x+16=t\), ta có: \(\left(x^2+10x+16+4\right)^2=\left(x^2+10x+20\right)^2\)

Có gì đó sai sai á nhờ :vv?

12 tháng 10 2020

( x + 2 )( x + 4 )( x + 6 )( x + 8 ) + 16

= [ ( x + 2 )( x + 8 ) ][ ( x + 4 )( x + 6 ) ] + 16

= ( x2 + 10x + 16 )( x2 + 10x + 24 ) + 16 (*)

Đặt t = x2 + 10x + 20 

(*) <=> ( t - 4 )( t + 4 ) + 16

      = t2 - 16 + 16

      = t2 = ( x2 + 10x + 20 )2

25 tháng 10 2020

(x2 + x)2 - 4(x2 + x) - 12

= [(x2 + x)2 - 4(x2 + x) + 4] - 16

= (x2 + x - 2)2 - 16

= (x2 + x - 6)(x2 + x + 2)

= (x2 - 2x + 3x - 6)(x2 + x + 2)

= (x - 2)(x + 3)(x2 + x + 2)

25 tháng 10 2020

Đặt t = x2 + x

bthuc ⇔ t2 - 4t - 12

           = t2 - 6t + 2t - 12

           = t( t - 6 ) + 2( t - 6 )

           = ( t - 6 )( t + 2 )

           = ( x2 + x - 6 )( x2 + x + 2 )

           = ( x2 - 2x + 3x - 6 )( x2 + x + 2 )

           = [ x( x - 2 ) + 3( x - 2 ) ]( x2 + x + 2 )

           = ( x - 2 )( x + 3 )( x2 + x + 2 )

16 tháng 11 2018

\(x^3+3x^2-4\)

\(=x^4-x^2+4x^2-4\)

\(=x^2.\left(x^2-1\right)+4.\left(x^2-1\right)\)

\(=\left(x^2+4\right).\left(x^2-1\right)\)

16 tháng 11 2018

\(x^3+3x^2-4\)

\(=x^3-x^2+4x^2-4\)

\(=x^2\left(x-1\right)+4\left(x^2-1\right)\)

\(=x^2\left(x-1\right)+4\left(x+1\right)\left(x-1\right)\)

\(=\left(x-1\right)\left[x^2+4\left(x+1\right)\right]\)

\(=\left(x-1\right)\left(x^2+4x+4\right)\)

\(=\left(x-1\right)\left(x+2\right)^2\)

=.= hok tốt!!

12 tháng 10 2020

\(2x^3-5x^2+2x=x.\left(2x^2-5x+2\right)\)

\(=x.\left[\left(2x^2-4x\right)-\left(x-2\right)\right]\)

\(=x.\left[2x\left(x-2\right)-\left(x-2\right)\right]\)

\(=x.\left(x-2\right)\left(2x-1\right)\)