\(x^3-12x-y^3+6y^2-16=0\)

Jup e vs ạ @Akai Harum...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2018

ta có : \(x^3-12x-y^3+6y^2-16\)

\(=x^3-\left(y^3-6y^2+12y-8\right)-12x+12y-24\)

\(=x^3-\left(y-2\right)^3-12\left(x-y+2\right)\)

\(=\left(x-y+2\right)\left(x^2+x\left(y-2\right)+\left(y-2\right)^2\right)-12\left(x-y+2\right)\)

\(=\left(x-y+2\right)\left(x^2+xy-2x+y^2-4y+4\right)-12\left(x-y+2\right)\)

\(=\left(x-y+2\right)\left(x^2+y^2+xy-2x-4y-8\right)\)

4 tháng 10 2020

a) \(\sqrt{a^3}-\sqrt{b^3}+\sqrt{a^2b}-\sqrt{ab^2}\)

\(=a\sqrt{a}-b\sqrt{b}+a\sqrt{b}-b\sqrt{a}\)

\(=\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)-\left(\sqrt{a}-\sqrt{b}\right)\sqrt{ab}\)

\(=\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b-\sqrt{ab}\right)\)

\(=\left(\sqrt{a}-\sqrt{b}\right)\left(a+b\right)\)

4 tháng 10 2020

b) \(x-y+\sqrt{xy^2}-\sqrt{y^3}\)

\(=\left(x-y\right)+\left(y\sqrt{x}-y\sqrt{y}\right)\)

\(=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)+y\left(\sqrt{x}-\sqrt{y}\right)\)

\(=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}+y\right)\)

21 tháng 8 2018

\(2x^2-3x\sqrt{x+3}+\left(x+3\right)\)

\(=2x^2-2x\sqrt{x+3}-x\sqrt{x+3}+\left(\sqrt{x+3}\right)^2\)

\(=2x\left(x-\sqrt{x+3}\right)-\sqrt{x+3}\left(x-\sqrt{x+3}\right)\)

\(=\left(2x-\sqrt{x+3}\right)\left(x-\sqrt{x+3}\right)\)

21 tháng 8 2018

\(2x^2-3x\sqrt{x+3}+\left(x+3\right)\)

\(=2x^2-x\sqrt{x+3}-2x\sqrt{x+3}+\left(\sqrt{x+3}\right)^2\)

\(=x\left(2x-\sqrt{x+3}\right)-\sqrt{x+3}\left(2x-\sqrt{x+3}\right)\)

\(=\left(x-\sqrt{x+3}\right)\left(2x-\sqrt{x+3}\right)\)

22 tháng 4 2021

vì để dễ tính hơn nha

22 tháng 4 2021

((: Dễ tính hơn ấy ạ:")?

4 tháng 8 2018

1)  \(x\sqrt{x}+y\sqrt{y}=\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)\)

2) \(x-3=\left(\sqrt{x}-\sqrt{3}\right)\left(\sqrt{x}+\sqrt{3}\right)\)

3) \(a+b=a-\left(-b\right)=\left(\sqrt{a}-\sqrt{-b}\right)\left(\sqrt{a}+\sqrt{-b}\right)\)
p/s: chúc bạn học tốt

19 tháng 1 2019

\(x^3+y^3+z^3-3xyz=\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz\)

                                           \(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)

                                           \(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)

                                           \(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)

                          

                                           

16 tháng 7 2018

ĐKXĐ : \(x\ne0\)

Câu a :

\(A=\sqrt{\dfrac{\left(x^2-3\right)^2+12x^2}{x^2}}+\sqrt{\left(x+2\right)^2-8x}\)

\(=\sqrt{\dfrac{x^4-6x^2+9+12x^2}{x^2}}+\sqrt{x^2+4x+4-8x}\)

\(=\sqrt{\dfrac{x^4+6x^2+9}{x^2}}+\sqrt{x^2-4x+4}\)

\(=\sqrt{\dfrac{\left(x^2+3\right)^2}{x^2}}+\sqrt{\left(x-2\right)^2}\)

\(=\left|\dfrac{x^2+3}{x}\right|+\left|x-2\right|\)

\(=\left|\dfrac{x^2}{x}+\dfrac{3}{x}\right|+\left|x-2\right|\)

Câu b :

Để \(A\in Z\Leftrightarrow\left|\dfrac{x^2}{x}+\dfrac{3}{x}\right|+\left|x-2\right|\in Z\)

\(\Leftrightarrow\dfrac{3}{x}\in Z\) ( Vì \(x^2⋮x\) )

\(\Leftrightarrow\left\{{}\begin{matrix}x=-3\\x=-1\\x=1\\x=3\end{matrix}\right.\)

Vậy \(x=-3;x=-1;x=1;x=3\) thì A đạt giá trị nguyên .

Chúc bạn học tốt !!

18 tháng 7 2019

\(x^2-16+2\left(x+4\right)\)

\(=\left(x+4\right)\left(x-4\right)+2\left(x+4\right)\)

\(=\left(x+4\right)\left(x-4+2\right)\)

\(=\left(x+4\right)\left(x-2\right)\)

18 tháng 7 2019

\(x^2-16+2\left(x+4\right)=x^2+2x-8=x^2-2x+4x-8\)

\(=x\left(x-2\right)+4\left(x-2\right)=\left(x+4\right)\left(x-2\right)\)

5 tháng 8 2018

\(\left(x+y+z\right)^5-x^5-y^5-z^5\)

Xét phương trình: \(\left(x+y+z\right)^5-x^5-y^5-z^5=0\)

Có nghiệm: \(x=-y;x=-z;y=-z\)

Hệ số của mũ là: 5

\(\Rightarrow\left(x+y+z\right)^5-x^5-y^5-z^5\)

\(=5\left(x+y\right)\left(y+z\right)\left(z+x\right)\left(x^2+y^2+z^2+xy+yz+xz\right)\)

Hok Tốt!!!