K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2016

x^3.(x^2-7)^2-36x

=x(x^6-14x^4+49x^2-36)

=x.[x^4(x^2-1)-13x^2(x^2-1)+36(x^2-1)

=x(x-1)(x+1)(x^4-13X^2+36)

=x(x-1)(x+1)[x^2(x^2-4)-9(x^2-4)]

=x(x-1)(x+1)(x-2)(x+2)(x-3)(x+3)

Ta có : x3 . ( x2 - 7 )2 - 36x

=> x ( x6 - 14x4 + 49x2 - 36 )

=> x [ x4 ( x2 - 1 ) - 13x2 ( x2 - 1 ) + 36 ( x2 - 1 )

=> x ( x - 1 ) ( x + 1 ) ( x4 - 13x2 + 36 )

=> x ( x - 1 ) ( x + 1 ) [ x2 ( x2 - 4 ) - 9 ( x2 - 4 ) ]

=> x ( x - 1 ) ( x + 1 ) ( x - 2 ) ( x + 2 ) ( x - 3 ) ( x + 3 )

17 tháng 8 2019

\(36x^2-\left(3x-2\right)^2\)

\(=\left(6x\right)^2-\left(3x-2\right)^2\)

\(=\left(6x+3x-2\right)\left(6x-3x+2\right)\)

\(=\left(9x-2\right)\left(3x+2\right)\)

17 tháng 8 2019

\(-49x^2+9\)

\(=3^2-\left(7x\right)^2\)

\(=\left(3-7x\right)\left(3+7x\right)\)

25 tháng 2 2018

A = x.[x^2.(x^2-7)^2-36]

   = x.[(x^3-7x)^2-6^2]

   = x.(x^3-7x-6).(x^3-7x+6)

   = x.[(x^3+1)-(7x+7)].[(x^3-x)-(6x-6)]

   = x.(x+1).(x^2-x-7).(x-1).(x^2+x-6)

   = x.(x+1).(x-1).(x-2).(x+3).(x^2-x-7)

Tk mk nha

31 tháng 7 2018

x3(x2−7)2−36x=x3(x4−14x2+49)−36xx3(x2−7)2−36x=x3(x4−14x2+49)−36x

=x7−14x5+49x3−36xx7−14x5+49x3−36x

=x7−x6+x6−x5−13x5+13x4−13x4+13x3+36x3−36xx7−x6+x6−x5−13x5+13x4−13x4+13x3+36x3−36x

=x6(x−1)+x5(x−1)−13x4(x−1)−13x3(x−1)+36x(x2−1)x6(x−1)+x5(x−1)−13x4(x−1)−13x3(x−1)+36x(x2−1)

=x(x−1)(x5+x4−13x3−13x2+36x+36)x(x−1)(x5+x4−13x3−13x2+36x+36)

=x(x−1)[x4(x+1)−13x2(x+1)+36(x+1)]x(x−1)[x4(x+1)−13x2(x+1)+36(x+1)]

=x(x−1)(x+1)(x4−13x2+36)x(x−1)(x+1)(x4−13x2+36)

đặt x^2 =a (a>=0) thì xét đa thức x4−13x2+36=a2−13a+36x4−13x2+36=a2−13a+36

xét Δ=b2−4ac=169−4.36=25Δ=b2−4ac=169−4.36=25

Δ>0Δ>0→phương trình có 2 nghiệm riêng biệt là ⎡⎣a1=−b+Δ√2a=13+52=9a2=−b−Δ√2a=13−52=4[a1=−b+Δ2a=13+52=9a2=−b−Δ2a=13−52=4(t/m a>=0)

vậy bt ban đầu :x(x−1)(x+1)(x2−4)(x2−9)x(x−1)(x+1)(x2−4)(x2−9)

=(x−3)(x−2)(x−1)x(x+1)(x+2)(x+3)

5 tháng 8 2017

a)   \(\left(a^2+4\right)^2-\left(4a\right)^2\)

\(=\left(a^2+4-4a\right)\left(a^2+4+4a\right)\)

\(=\left(a-2\right)^2\left(a+2\right)^2\)

b) \(36x^2-\left(x^2+9\right)^2\)

\(=\left(6x\right)^2-\left(x^2+9\right)^2\)

\(=-\left(6x+x^2+9\right)\left(6x+x^2+9\right)\)

\(=\left(x^2-6x+9\right)\left(x^2+6x+9\right)\)

\(=\left(x-3\right)^2\left(x+3\right)^2\)

c) \(\left(4x^2-25\right)^2-9\left(2x-5\right)^2\)

\(=\left(4x^2-25\right)-\left(18x-45\right)^2\)

\(=\left(4x^2-25-18x+45\right)\left(4x^2-25+18x-45\right)\)

\(=\left(4x^2-18x+20\right)\left(4x^2+18x-70\right)\)

d) \(4\left(2x-3\right)^2-9\left(4x^2-9\right)^2\)

\(=\left(8x-12\right)^2-\left(36x^2-81\right)^2\)

\(=\left(8x-12-36x^2+81\right)\left(8x-12+36x^2-81\right)\)

còn lại tự làm

30 tháng 9 2018

\(\left(a^2+4\right)^2-16a^2\)

\(=\left(a^2+4-4a\right)\left(a^2+4+4a\right)\)

\(=\left(a^2-2.a.2+2^2\right).\left(a^2+2.a.2+2^2\right)\)

\(=\left(a-2\right)^2\left(a+2\right)^2\)

hk tốt

^^

24 tháng 8 2020

x4 - 9x3 + 28x2 - 36x + 16

Thử với x = 4 ta có :

44 - 9.43 + 28.42 - 36.4 + 16 = 0

Vậy 4 là nghiệm của đa thức . Theo hệ quả của định lí Bézout thì đa thức trên chia hết cho x - 4

Thực hiện phép chia đa thức cho x - 4 ta được x3 - 5x2 + 8x - 4

Vậy ta phân tích được ( x - 4 )( x3 - 5x2 + 8x - 4 )

Tiếp tục : Thử x = 2 với x3 - 5x2 + 8x - 4

Ta có : 23 - 5.22 + 8.2 - 4 = 0 

Vậy 2 là nghiệm của đa thức . Theo hệ quả của định lí Bézout thì x3 - 5x2 + 8x - 4 chia hết cho x - 2

Thực hiện phép chia  x3 - 5x2 + 8x - 4 cho x - 2 ta được x2 - 3x + 2

Vậy ta phân tích được ( x - 4 )( x - 2 )( x2 - 3x + 2 )

x2 - 3x + 2 = x2 - x - 2x + 2 

                  = x( x - 1 ) - 2( x - 1 )

                  = ( x - 2 )( x - 1 )

Vậy : x4 - 9x3 + 28x2 - 36x + 16 = ( x - 4 )( x - 2 )( x - 2 )( x - 1 ) = ( x - 4 )( x - 2 )2( x - 1 )

24 tháng 8 2020

a. \(x^4-9x^3+28x^2-36x+16\)

\(=x^4-8x^3+20x^2-16x-x^3+8x^2-20x+16\)

\(=x\left(x^3-8x^2+20x-16\right)-\left(x^3-8x^2+20x-16\right)\)

\(=\left(x-1\right)\left(x^3-8x^2+20x-16\right)\)

\(=\left(x-1\right)\left(x^3-6x^2+8x-2x^2+12x-16\right)\)

\(=\left(x-1\right)\left[x\left(x^2-6x+8\right)-2\left(x^2-6x+8\right)\right]\)

\(=\left(x-1\right)\left(x-2\right)\left(x^2-6x+8\right)\)

\(=\left(x-1\right)\left(x-2\right)\left(x^2-2x-4x+8\right)\)

\(=\left(x-1\right)\left(x-2\right)\left[x\left(x-2\right)-4\left(x-2\right)\right]\)

\(=\left(x-1\right)\left(x-2\right)^2\left(x-4\right)\)

30 tháng 7 2021

x2 - 4y2 + 9 - 6x 

= (x2 - 6x + 9) - (2y)2

= (x - 3)2 - (2y)2 = (x + 2y - 3)(x - 2y - 3)

2 tháng 8 2015

​a, x^5+x^4+x^3-x^3-x²-x+x²+x+1​

​= x^3(x²+x+1)-x(x²+x+1)+1(x²+x+1)

​= (x²+x+1).(x³-x²+1)