Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+y+z\right)^5-x^5-y^5-z^5\)
Xét phương trình: \(\left(x+y+z\right)^5-x^5-y^5-z^5=0\)
Có nghiệm: \(x=-y;x=-z;y=-z\)
Hệ số của mũ là: 5
\(\Rightarrow\left(x+y+z\right)^5-x^5-y^5-z^5\)
\(=5\left(x+y\right)\left(y+z\right)\left(z+x\right)\left(x^2+y^2+z^2+xy+yz+xz\right)\)
Hok Tốt!!!
A=x14+x7+1
=(x14+x13+x12)-(x13+x12+x11)+(x11+x10+x9)-(x10+x9+x8)+(x8+x7+x6)-(x6+x5+x4)+(x5+x4+x3)-(x3+x2+x)+(x2+x+1)
Đặt B=x2+x+1
=>A=x12B-x11B+x9B-x8B+x6B-x4B+x3B-xB+B
=>A=B(x12-x11+x9-x8+x6-x4+x3-x+1)
Thay B=x2+x+1 vào A là xong
1/ \(x-6\sqrt{x}-8=\left(\sqrt{x}-3+\sqrt{17}\right)\left(\sqrt{x}-3-\sqrt{17}\right)\)
2/ Bài này làm gì còn phân tích được nữa.
\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)
\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)
Đặt \(x^2+7x+10=a\)ta có:
\(a\left(a+2\right)-24\)
\(=a^2+2a+1-25\)
\(=\left(a+1\right)^2-25\)
\(=\left(a-4\right)\left(a+6\right)\)
Thay trở lại ta được: \(\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)
\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)
\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)
Đặt \(x^2+7x+10=a\) ta có:
\(a\left(a+2\right)-24\)
\(=a^2+2a+1-25\)
\(=\left(a+1\right)^2-25\)
\(=\left(a-4\right)\left(a+6\right)\)
Thay trở lại ta được: \(\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)
\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)
\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)
Đặt \(t=x^2+7x+11\)
đến đây biến đổi theo t rồi thay trở lại