Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đưa về hằng đẳng thức số 3 , ta có :
\(\left(x^2+1\right)^2-4x^2\)
\(=\left(x^2+1\right)^2-\left(2x\right)^2\)
\(=\left(x^2-1-2x\right)\left(x^2-1+2x\right)\)
b) \(x^2-y^2+2yz-z^2\)
\(=x^2-\left(y^2-2yz+z^2\right)\)
\(=x^2-\left(y-z\right)^2\)
Tương tự như câu a , áp dụng hằng số 3 , ta có :
\(=x^2-\left(y-z\right)^2=\left(x-y+z\right)\left(x+y-z\right)\)
1) \(\left(x^2+1\right)^2-4x^2\)
\(=\left(x^2+1\right)^2-\left(2x\right)^2\)
\(=\left(x^2+2x+1\right)\left(x^2-2x+1\right)\)
\(=\left(x+1\right)^2\left(x-1\right)^2\)
\(=\left(x^2-1\right)\left(x^2-1\right)\)
\(=\left(x^2-1\right)^2\)
\(x^2-2x+2y-xy\)
\(=-2\left(x-y\right)+x\left(x-y\right)\)
\(=\left(x-y\right)\left(x-2\right)\)
Đặt \(a+b-2c=x,b+c-2a=y,c+a-2b=z\)
\(\Rightarrow x+y+z=0\)
Chắc bạn biết: \(x+y+z=0\Rightarrow x^3+y^3+z^3=3xyz\)
Vậy \(\left(a+b-2c\right)^3+\left(b+c-2a\right)^3+\left(c+a-2b\right)^3=3\left(a+b-2c\right)\left(b+c-2a\right)\left(c+a-2b\right)\)
Chúc bạn học tốt.
từ vế trái ta có
\(\frac{x.x\left(x+3\right)}{x.\left(x+3\right)\left(x+3\right)}\)
Rút gọn đi x và (x+3) còn
\(\frac{x}{x+3}\)
từ đó suy ra cái bên trên đó .
Xét VT, ta có: \(\frac{x^2\left(x+3\right)}{x\left(x+3\right)^2}=\frac{x}{x+3}\)= VP
Vậy ...
ai trên 10đ thì tk nha , mk sẽ đền bù xứng đáng ( ko phải tk cho nk này , nk trần hoàng viêt )
a) \(x^5+x+1=\left(x^5+x+1\right)=x\left(x^4+1+\frac{1}{x}\right)\)
b) và c) Tương tự nha
Chả biết đúng hay sai :v tại dùng máy tính tính ra kết quả rồi phân tích ngược lại
a) \(x^5+x+1=x^5+x^4+x^3-x^3-x^2-x+x^2+x+1\)
\(=x^3\left(x^2+x+1\right)+x\left(x^2+x+1\right)-\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^3-x-1\right)\)
b)\(x^4+2002x^2+2001x+2002=x^4+x^3+1-x^3+x^2+x+2002x^2+2002x+1\)
\(=x^2\left(x^2+x+1\right)-x\left(x^2+x+1\right)+2002\left(x^2+x+1\right)\)
\(=\left(x^2-x+2002\right)\left(x^2+x+1\right)\)
c)Tương tự câu a),ta phân tích được:
\(x^{11}+x^7+1=\left(x^2+x+1\right)\left(x^9-x^8+x^6-x^4+x^3-x+1\right)\)
Đúng là hok sinh giỏi có khác ,bài toán nó cũng khó
Ta có:
\(p^{m+2}q-p^{m+1}q^3-p^2q^{n+1}+pq^{n+3}\)
\(=\left(p^{m+2}q-p^{m+1}q^3\right)-\left(p^2q^{n+1}-pq^{n+3}\right)\)
\(=p^{m+1}q\left(p-q^2\right)-pq^{n+1}\left(p-p^2\right)\)
\(=\left(p-p^2\right)\left(p^{m+1}q-pq^{n+1}\right)\)
\(=pq\left(p-p^2\right)\left(p^m-p^n\right)\)