K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2017

Đúng là hok sinh giỏi có khác ,bài toán nó cũng khó 

27 tháng 6 2017

Ta có:

\(p^{m+2}q-p^{m+1}q^3-p^2q^{n+1}+pq^{n+3}\)

\(=\left(p^{m+2}q-p^{m+1}q^3\right)-\left(p^2q^{n+1}-pq^{n+3}\right)\)

\(=p^{m+1}q\left(p-q^2\right)-pq^{n+1}\left(p-p^2\right)\)

\(=\left(p-p^2\right)\left(p^{m+1}q-pq^{n+1}\right)\)

\(=pq\left(p-p^2\right)\left(p^m-p^n\right)\)

22 tháng 6 2017

a) Đưa về hằng đẳng thức số 3 , ta có :

\(\left(x^2+1\right)^2-4x^2\)

\(=\left(x^2+1\right)^2-\left(2x\right)^2\)

\(=\left(x^2-1-2x\right)\left(x^2-1+2x\right)\)

b) \(x^2-y^2+2yz-z^2\)

\(=x^2-\left(y^2-2yz+z^2\right)\)

\(=x^2-\left(y-z\right)^2\)

Tương tự như câu a , áp dụng hằng số 3 , ta có :

\(=x^2-\left(y-z\right)^2=\left(x-y+z\right)\left(x+y-z\right)\)

22 tháng 6 2017

1) \(\left(x^2+1\right)^2-4x^2\)

\(=\left(x^2+1\right)^2-\left(2x\right)^2\)

\(=\left(x^2+2x+1\right)\left(x^2-2x+1\right)\)

\(=\left(x+1\right)^2\left(x-1\right)^2\)

\(=\left(x^2-1\right)\left(x^2-1\right)\)

\(=\left(x^2-1\right)^2\)

22 tháng 6 2017

\(x^2-2x+2y-xy\)

\(=-2\left(x-y\right)+x\left(x-y\right)\)

\(=\left(x-y\right)\left(x-2\right)\)

29 tháng 10 2017

\(x^2-2x+2y-xy.\)

\(=\left(x^2-xy\right)-\left(2x-2y\right)\)

\(=x.\left(x-y\right)-2.\left(x-y\right)\)

\(=\left(x-y\right).\left(x-2\right)\)

12 tháng 8 2018

Đặt \(a+b-2c=x,b+c-2a=y,c+a-2b=z\)

\(\Rightarrow x+y+z=0\)

Chắc bạn biết: \(x+y+z=0\Rightarrow x^3+y^3+z^3=3xyz\)

Vậy \(\left(a+b-2c\right)^3+\left(b+c-2a\right)^3+\left(c+a-2b\right)^3=3\left(a+b-2c\right)\left(b+c-2a\right)\left(c+a-2b\right)\)

Chúc bạn học tốt.

12 tháng 8 2018

Đặt:  \(a+b-2c=x;\)   \(b+c-2a=y;\)\(c+a-2b=z\)

=>   \(x+y+z=0\)

=>  \(x^3+y^3+z^3=3xyz\)

Thay trở lại ta được:

\(\left(a+b-2c\right)^3+\left(b+c-2a\right)^3+\left(c+a-2b\right)^3\)

\(=3\left(a+b-2c\right)\left(b+c-2a\right)\left(c+a-2b\right)\)

27 tháng 6 2017

từ vế trái ta có

\(\frac{x.x\left(x+3\right)}{x.\left(x+3\right)\left(x+3\right)}\)

Rút gọn đi x và (x+3) còn

\(\frac{x}{x+3}\)

từ đó suy ra cái bên trên đó .

27 tháng 6 2017

Xét VT, ta có: \(\frac{x^2\left(x+3\right)}{x\left(x+3\right)^2}=\frac{x}{x+3}\)= VP

Vậy ...

22 tháng 8 2017

oki kb nha!

22 tháng 8 2017

ai trên 10đ thì tk nha , mk sẽ đền bù xứng đáng ( ko phải tk cho nk này , nk trần hoàng viêt )

6 tháng 10 2018

a) \(x^5+x+1=\left(x^5+x+1\right)=x\left(x^4+1+\frac{1}{x}\right)\)

b) và c) Tương tự nha

6 tháng 10 2018

Chả biết đúng hay sai :v tại dùng máy tính tính ra kết quả rồi phân tích ngược lại

a) \(x^5+x+1=x^5+x^4+x^3-x^3-x^2-x+x^2+x+1\)

\(=x^3\left(x^2+x+1\right)+x\left(x^2+x+1\right)-\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^3-x-1\right)\)

b)\(x^4+2002x^2+2001x+2002=x^4+x^3+1-x^3+x^2+x+2002x^2+2002x+1\)

 \(=x^2\left(x^2+x+1\right)-x\left(x^2+x+1\right)+2002\left(x^2+x+1\right)\)

\(=\left(x^2-x+2002\right)\left(x^2+x+1\right)\)

c)Tương tự câu a),ta phân tích được:

  \(x^{11}+x^7+1=\left(x^2+x+1\right)\left(x^9-x^8+x^6-x^4+x^3-x+1\right)\)

27 tháng 12 2015

ai tick mk mình tick lại 3 cái

7 tháng 4 2019

=4 

 nhớ giữ lời hứa nha 

mk cx sẽ giữ lời hứa

kb nha