Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
b) x3y3 + x2y2+ 4 = x3y3- 4xy + (xy)2- 2xy.2 + 22 = xy [ (xy)^2 - 2^2 ] + ( xy - 2)^2
= xy(xy-2)(xy+2)+ (xy-2)^2
= (xy-2) [ xy(xy+2) + ( xy-2) ]
= (xy-2) [ (xy)2 + 2xy + xy - 3 ]
= ( xy - 3) [ (xy)2 + 3xy - 3]
3) (chưa bik làm)
4) x4 +x3 + 6x2 +5x +5
= x4 +x3 + x2 + 5x2 + 5x +5
= x2( x2+x+ 1 ) + 5( x2+x+ 1 )
= ( x2+ 5 ) ( x2+x+ 1 )
5) x4 - 2x3 - 12x2 +12x + 36
= x4 - 2x3 - 6x2 - 6x2 + 12x + 36=
x2 ( x2 - 2x - 6) - 6 ( x2 - 2x - 6)
= (x^2 - 6) ( x2 - 2x - 6) 6) x8y8 + x4y4 + 1 = \(\left[\left(xy\right)^4\right]^2+2x^4y^4+1-x^4y^4\)=\(\left[\left(xy\right)^4+1\right]^2-\left[\left(xy\right)^2\right]^2\)
= \(\left(x^4y^4+1-x^2y^2\right)\left(x^4y^4+1+x^2y^2\right)\)
( mik ko bik đúng hay sai đâu nha) mik thấy nó thành nhân tử thì mik tách thôi
![](https://rs.olm.vn/images/avt/0.png?1311)
a)\(x^3+x+2=x^3+1+x+1\)
\(=\left(x+1\right)\left(x^2-x+1\right)+\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-x+2\right)\)
b)\(x^3+3x^2-4=x^3-1+3x^2-3\)
\(=\left(x-1\right)\left(x^2+x+1\right)+3\left(x^2-1\right)\)
\(=\left(x-1\right)\left(x^2+x+1\right)+3\left(x-1\right)\left(x+1\right)\)
\(=\left(x-1\right)\left[x^2+x+1+3x+3\right]\)
\(=\left(x-1\right)\left(x+2\right)^2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, x3+x+2
=x3-x2+2x+x2-x+2
=x(x2-x+2)+(x2-x+2)
=(x+1)(x2-x+2)
b, x3-2x-1
=x3-x2-x+x2-x-1
=x(x2-x-1)+(x2-x-1)
=(x+1)(x2-x-1)
c, x3+3x2-4
=x2(x+3)-4
=(x-1)(x+2)2
d, x3+3x2y-9xy2+5y3
=(x3-3x2y+3xy2-y3)+(6y3-12xy2+6x2y)
=(x-y)3+6y(x-y)2
=(x-y)2(x+5y)
![](https://rs.olm.vn/images/avt/0.png?1311)
a/ \(=3y^2-6y-2x+1\)
b/ \(=-\left(x^3-3x^2+3x-1\right)=-\left(x-1\right)^3\)
c/ \(=\left(2-x\right)^3\)
d/ \(=xy^2+x^2y+3xy+x^2y+x^3+3x^2-3xy-3x^2-9x\)
\(=xy\left(y+x+3\right)+x^2\left(y+x+3\right)-3x\left(y+x+3\right)\)
\(=\left(xy+x^2-3x\right)\left(y+x+3\right)=x\left(y+x-3\right)\left(y+x+3\right)\)
e/ \(=xy-x^2+2x-y^2+xy-2y\)
\(=x\left(y-x+2\right)-y\left(y-x+2\right)=\left(x-y\right)\left(y-x+2\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) =(2x+3y-1)2
b)=-(x-1)3
c)=-(x3-6x2+12x-8)=-(x-2)3
d)x3 + 2x2y + xy2 – 9x
= x(x2 + 2xy + y2 -9)
= x[(x2 + 2xy + y2) - 32]
= x[(x + y)2 - 32]
= x (x + y – 3)(x + y + 3)
e) 2x-2y-x2+2xy-y2=2(x-y)-(x-y)2=(x-y)(2-x+y)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \([(x-y)3 + (y-z)3]+ (z-x)3\)=\(\left(x-y+y-z\right)\left[\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)+\left(y-z\right)^2\right]-\left(x-z\right)^3\)
\(=\left(x-z\right)\left[\left(\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)+\left(y-z\right)^2-\left(x-z\right)^2\right)\right]\)
\(=\left(x-z\right)\left[\left(x-y\right)\left(x-y-y+z\right)+\left(y-z-x+z\right)\left(y-z+x-z\right)\right]=\left(x-z\right)\left[\left(x-2y+z\right)\left(x+z\right)-\left(x-y\right)\left(x+y-2z\right)\right]\)
\(=\left(x-z\right)\left(x-y\right)\left(x-2y+z-x-y+2z\right)=\left(x-z\right)\left(x-y\right)\left(z-y\right)3\)
b) \(=y^2\left(x^2y-x^3+z^3-z^2y\right)-z^2x^2\left(z-x\right)=y^2\left[-y\left(z^2-x^2\right)-\left(z^3-x^3\right)\right]-z^2x^2\left(z-x\right)\)
\(=y^2\left(z-x\right)\left(-yz-xy-z^2-zx-x^2\right)-z^2x^2\left(z-x\right)=\left(z-x\right)\left(-y^3z-xy^2-z^2y^2-xyz-x^2y^2-z^2x^2\right)\)
đến đây coi như là thành nhân tử rồi nha. em muốn gọn thì ráng ngồi nghĩ rồi tách nha. chỉ cần nhóm mấy cái có ngoặc giống nhau là đc. k khó đâu. chịu khó nghĩ để rèn luyện nha
c) \(x^8+2x^4+1-x^4=\left(x^4+1\right)^2-x^4=\left(x^4+1-x^2\right)\left(x^4+1+x^2\right)\)
\(\left(9a^3-6a^2\right)+\left(6a^2-4a\right)+\left(-9a+6\right)=3a^2\left(3a-2\right)+2a\left(3a-2\right)-3\left(3a-2\right)=\left(3a-2\right)\left(3a^2+2a-3\right)\)
d) em sửa đề đi. đề sai rồi. đồng nhất hệ số phải có dấu bằng nha.
có gì liên hệ chị. đúng nha ;)
\(\text{a) }x^3y^3+x^2y^2+4\)
\(=x^3y^3+2x^2y^2-x^2y^2+4\)
\(=\left(x^3y^3+2x^2y^2\right)-\left(x^2y^2-4\right)\)
\(=x^2y^2\left(xy+2\right)-\left(xy+2\right)\left(xy-2\right)\)
\(=\left(xy+2\right)\left(x^2y^2-xy+2\right)\)
\( {c)}\)\(x^4+x^3+6x^2+5x+5\)
\(=\left(x^4+x^3+x^2\right)+\left(5x^2+5x+5\right)\)
\(=x^2\left(x^2+x+1\right)+5\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2+5\right)\)
\({d)}\)\(x^4-2x^3-12x^2+12x+36\)
\(=\left(x^4-2x^3-6x^2\right)-\left(6x^2-12x-36\right)\)
\(=x^2\left(x^2-2x-6\right)-6\left(x^2-2x-6\right)\)
\(=\left(x^2-2x-6\right)\left(x^2-6\right)\)
Câu b sai đề thì phải ah