Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,6x^3-9x^2=3x^2\left(2x-3\right)\)
\(b,4x^2y-8xy^2+10x^2y^2=2xy\left(2x-4y+5xy\right)\)
\(c,20x^2y-12x^3=4x^2\left(5y-3x\right)\)
\(d,4xy^2+8xyz=4xy\left(y+2z\right)\)
=x(9x^2-4y^2+4y-1)
=x(9x^2-(2y-1)^2)
=x(3x-2y+1)(3x+2y-1)
\(-8x^2y^2-12xy^3-4xy^2\)
\(=-8x^2y^2-8xy^3-4xy^3-4xy\)
\(=-8xy\left(xy-y^2\right)-4xy\left(y^2-1\right)\)
\(=-8xy\left(y\left(x-y\right)\right)-4xy\left(y-1\right)\left(y+1\right)\)
\(=-4.2xy\left(y\left(x-y\right)\right)-4xy\left(y-1\right)\left(y+1\right)\)
\(=-4\left(2xy\left(y\left(x-y\right)\right)-xy\left(y-1\right)\left(y+1\right)\right)\)
Vậy thôi thành nhân tử là dc rồi
Ủng hộ nha
Thanks
a) \(2x^2-4xy+2y^2-8z^2=2\left(x^2-2xy+y^2-4z^2\right)=2\left[\left(x-y\right)^2-\left(2z\right)^2\right]\)
\(=2\left(x-y-2z\right)\left(x-y+2z\right)\)
b) \(x^3-3x^2-4x+12=x^2\left(x-3\right)-4\left(x-3\right)=\left(x^2-4\right)\left(x-3\right)=\left(x-2\right)\left(x+2\right)\left(x-3\right)\)
x^3-2x^2-4xy^2+x
=x(x^2-2x-4y^2+1)
=x[(x^2-2x+1)-4y^2]
=x[(x-1)^2-4y^2]
=x(x-1-2y)(x-1+2y)
Phân tích đa thức thành nhân tử
x3-2x2-4xy2+x
= x (x2-2x-4y2+1)
a) 5x2 - 10x = 5x( x - 2 )
b) x2 - y2 - 2x + 2y = (x2 - y2) - (2x - 2y)
= (x - y ) ( x + y)-2 (x-y)
= ( x - y) ( x + y - 2)
c) 4x2 - 4xy - 8y2 = (4x2 - 4xy + 8y2) - 9y2
= (2x - 9y2) - 3y2
= (2x - y - 3y) (2x - y + 3y)
= (2x - 4y) (2x + 2y)
= 4(x - 2y) (x + y)
a) 5x2 - 10x = 5x( x - 2 )
b) x2 - y2 - 2x + 2y = (x2 - y2) - (2x - 2y)
= (x - y ) ( x + y)-2 (x-y)
= ( x - y) ( x + y - 2)
c) 4x2 - 4xy - 8y2 = (4x2 - 4xy + 8y2) - 9y2
= (2x - 9y2) - 3y2
= (2x - y - 3y) (2x - y + 3y)
= (2x - 4y) (2x + 2y)
= 4(x - 2y) (x + y)
4x3y - 4xy3 - 8xy2 - 4xy
= 4xy.(x2 - y2 - 2y - 1)
= 4xy.[(x2 - 1) - (y2 + 2y)]
= 4xy.[(x+1).(x-1) - y.(y+2)]
= 4xy(x3-y2-2y)