K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(=x^4-5x^3+4x^3-20x^2+7x^2-35x+4x-20\)

\(=\left(x-5\right)\left(x^3+4x^2+7x+4\right)\)

\(=\left(x-5\right)\left(x^3+x^2+3x^2+3x+4x+4\right)\)

\(=\left(x-5\right)\left(x+1\right)\left(x^2+3x+4\right)\)

b: Đề sai rồi bạn

25 tháng 10 2016

Ta có : (x+2)(x+4)(x+6)(x+8) + 16

=[(x+2).(x+8)].[(x+4)(x+6)]+16

=(x2+10x+16).(x2+10x+24)+16 (1)

Đặt x^2+10x+16=a thì (1) trở thành:

a.(a+8)+16=a2+8a+16=(a+4)2=(x^2+10x+20)2

24 tháng 8 2019

Câu hỏi của Nguyễn Tấn Phát - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo câu a nhé!

11 tháng 9 2018

Đặt \(x^2+x+1=t\) 

Ta có: \(\left(x^2+x+1\right)^2+3x\left(x^2+x+1\right)+2x^2\)

\(=t^2+3xt+2x^2\)

\(=t^2+xt+2xt+2x\)

\(=t\left(t+x\right)+2x\left(t+x\right)\)

\(=\left(t+x\right)\left(t+2x\right)\)

\(=\left(x^2+x+1+x\right)\left(x^2+x+1+2x\right)\)

\(=\left(x^2+2x+1\right)\left(x^2+3x+1\right)\)

\(=\left(x+1\right)^2\left(x^2+3x+1\right)\)

Chúc bạn học tốt.

11 tháng 9 2018

Đặt x^2+2x=t =>3t^2-2t-1=3t^2-3t+t-1=3t(t-1)+(t-1)=(t-1)(3t+1)

=>(x^2+2x-1)(3x^2+6x+1)

25 tháng 10 2016

không cần phương pháp đó đâu, mik có cách này hay hơn nè

tìm nghiệm của đthức trên

nếu nghiệm là số dương thì khi phân tích xong sẽ có 1 tsố là (x-1)

nếu nghiệm là số âm thì...........................................1..........(x+1)

VD: phân tích thành nhân tử:    2x^2+5x-3

Nghiệm của đa thức trên là 3

=> 2x^2+6x-x-3

=> 2x(x+3)-1(x+3)

=> (2x-1)(x+3)

ĐÓ, KICK MIK NHA

25 tháng 10 2016

Nhưng phải làm theo phương pháp đặt ẩn phụ

1 tháng 9 2020

B1:

a) \(5\left(x^2+y^2\right)-20x^2y^2\)

\(=5\left(x^2-4x^2y^2+y^2\right)\)

b) \(=2\left(x^8-16\right)=2\left(x^4-4\right)\left(x^4+4\right)=2\left(x^2-2\right)\left(x^2+2\right)\left(x^4+4\right)\)

1 tháng 9 2020

B2: 

a) Đặt \(x^2-3x+1=y\)

=> \(y^2-12y+27\)

\(=\left(y^2-12y+36\right)-9\)

\(=\left(y-6\right)^2-3^2\)

\(=\left(y-9\right)\left(y-3\right)\)

\(=\left(x^2-3x-10\right)\left(x^2-3x-4\right)\)

\(=\left(x+1\right)\left(x-4\right)\left(x^2-3x-10\right)\)

b) Đặt \(x^2+7x+11=t\)

Ta có: \(\left[\left(x+2\right)\left(x+5\right)\right]\cdot\left[\left(x+3\right)\left(x+4\right)\right]-24\)

\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)

\(=\left(t-1\right)\left(t+1\right)-24\)

\(=t^2-25\)

\(=\left(t-5\right)\left(t+5\right)\)

\(=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)

\(=\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)