\(a^3+3a^2+3a+1-27b^3\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9 2018

\(a,a^3+3a^2+3a+1-27b^3\\ =\left(a+1\right)^3-\left(3b\right)^3\\ =\left(a+1-3b\right)\left[\left(a+1\right)^2+\left(a+1\right)\left(3b\right)+\left(3b\right)^2\right]\\ =\left(a+1-3b\right)\left(a^2+2a+1+3ab+3b+9b^2\right)\)

\(c,x^6-x^4+2x^3+2x^2\\ =x^4\left(x^2-1\right)+2x^2\left(x+1\right)\\ =x^4\left(x+1\right)\left(x-1\right)+2x^2\left(x+1\right)\\ =x^2\left(x+1\right)\left[x^2\left(x-1\right)+2\right]\\ =x^2\left(x+1\right)\left(x^3-x^2+2\right)\)

28 tháng 9 2018

c, \(x^6-x^4+2x^3+2x^2\)

\(=x^2\left(x^4-x^2+2x+2\right)\)

\(=x^2[x^2\left(x-1\right)\left(x+1\right)+2\left(x+1\right)]\)

\(=x^2\left(x+1\right)\left(x^3-x^2+2\right)\)

\(=x^2\left(x+1\right)[x^2\left(x+1\right)-2x\left(x+1\right)+2\left(x+1\right)]\)

\(=x^2\left(x+1\right)^2\left(x^2-2x+2\right)\)

28 tháng 9 2018

d,

\(2x^3-x^2-1\)

\(=2x^3-2x^2+x^2-x+x-1\)

\(=2x^2\left(x-1\right)+x\left(x-1\right)+\left(x-1\right)\)

\(=\left(x-1\right)\left(2x^2+x+1\right)\)

9 tháng 11 2016

a)\(x^2+7x+6\)

\(=x^2+6x+x+6\)

\(=x\left(x+6\right)+\left(x+6\right)\)

\(=\left(x+1\right)\left(x+6\right)\)

b)\(x^4+2016x^2+2015x+2016\)

\(=x^4+2016x^2+\left(2016x-x\right)+2016\)

\(=\left(x^4-x\right)+\left(2016x^2+2016x+2016\right)\)

\(=x\left(x-1\right)\left(x^2+x+1\right)+2016\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^2-x+2016\right)\)

9 tháng 11 2016

Bài 3:

Từ \(a^2+b^2+c^2+3=2\left(a+b+c\right)\)

\(\Rightarrow a^2+b^2+c^2+3-2a-2b-2c=0\)

\(\Rightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)=0\)

\(\Rightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\) (1)

Ta thấy:\(\begin{cases}\left(a-1\right)^2\ge0\\\left(b-1\right)^2\ge0\\\left(c-1\right)^2\ge0\end{cases}\)

\(\Rightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge0\) (2)

Từ (1) và (2) \(\Rightarrow\begin{cases}\left(a-1\right)^2=0\\\left(b-1\right)^2=0\\\left(c-1\right)^2=0\end{cases}\)

\(\Rightarrow\begin{cases}a-1=0\\b-1=0\\c-1=0\end{cases}\)\(\Rightarrow\begin{cases}a=1\\b=1\\c=1\end{cases}\)

\(\Rightarrow a=b=c=1\Rightarrow H=1\cdot1\cdot1+1^{2014}+1^{2015}+1^{2016}=1+1+1+1=4\)

23 tháng 8 2016

1 ) \(a\left(m+n\right)+b\left(m+n\right)\)

   \(=\left(a+b\right)\left(m+n\right)\)

2 ) \(a^2\left(x+y\right)-b^2\left(x+y\right)\)

   \(=\left(a^2-b^2\right)\left(x+y\right)\)

   \(=\left[\left(a-b\right).\left(a+3\right)\right]\left(x+y\right)\)

3 ) \(6a^2-3a+12ab\)

   \(=3a.2a-3a+3a.4b\)

   \(=3a.\left(2a-1+4b\right)\)

4 ) \(2x^2y^4-2x^4y^2+6x^3y^3\)

   \(=2x^2y^2.y^2-2x^2y^2.x^2+2x^2y^2.3xy\)

    \(=2x^2y^2\left(y^2-x^2+3xy\right)\)

5 ) \(\left(x+y\right)^3-x\left(x+y\right)^2\)

      \(=\left(x+y\right)^2.\left(x+y-x\right)\)

      \(=\left(x+y\right)^2.y\)

      

 

23 tháng 8 2016

1)a(m+n)+b(m+n)

=(a+b)(m+n)

2)a2(x+y)-b2(x+y)

=(a2-b2)(x+y)

3)6a2-3a+12ab

=3a.2a-3a.(1-4b)

=3a.(2a-1+4b)

5)(x+y)3-x(x+y)2

=(x+y)(x+y)2-x(x+y)2

=(x+y)2(x+y-x)

 

30 tháng 7 2018

e) = \(\dfrac{3}{2\left(x+3\right)}\) - \(\dfrac{x-6}{2x\left(x+3\right)}\)

= \(\dfrac{3x}{2x\left(x+3\right)}\) - \(\dfrac{x-6}{2x\left(x+3\right)}\) = \(\dfrac{3x-x+6}{2x\left(x+3\right)}\)

= \(\dfrac{2x-6}{2x\left(x+3\right)}\)

= \(\dfrac{2\left(x-3\right)}{2x\left(x+3\right)}\)

30 tháng 7 2018

c) = \(\dfrac{2\left(a^3-b^3\right)}{3\left(a+b\right)}\) . \(\dfrac{6\left(a+b\right)}{a^2-2ab+b^2}\)

= \(\dfrac{-2\left(a+b\right)\left(a^2-2ab+b^2\right)}{3\left(a+b\right)}\) . \(\dfrac{6\left(a+b\right)}{a^2-2ab+b^2}\)

= \(\dfrac{-2\left(a+b\right)}{1}\) . \(\dfrac{2}{1}\) = -4 (a+b)

26 tháng 9 2018

      \(x^3-x^2-14x+24\)

\(=x^3-2x^2+x^2-2x-12x+24\)

\(=x^2\left(x-2\right)+x\left(x-2\right)-12\left(x-2\right)\)

\(=\left(x-2\right)\left(x^2+x-12\right)\)

\(=\left(x-2\right).\left[x^2+4x-3x-12\right]\)

\(=\left(x-2\right).\left[x\left(x+4\right)-3\left(x+4\right)\right]\)

\(=\left(x-2\right)\left(x+4\right)\left(x-3\right)\)

      \(x^4+x^3+2x-4\)

\(=x^4-x^3+2x^3-2x^2+2x^2-2x+4x-4\)

\(=x^3\left(x-1\right)+2x^2\left(x-1\right)+2x\left(x-1\right)+4\left(x-1\right)\)

\(=\left(x-1\right)\left(x^3+2x^2+2x+4\right)\)

\(=\left(x-1\right).\left[x^2\left(x+2\right)+2\left(x+2\right)\right]\)

\(=\left(x-1\right)\left(x+2\right)\left(x^2+2\right)\)

      \(8x^4-2x^3-3x^2-2x-1\)

\(=8x^4-8x^3+6x^3-6x^2+3x^2-3x+x-1\)

\(=8x^3\left(x-1\right)+6x^2\left(x-1\right)+3x\left(x-1\right)+x-1\)

\(=\left(x-1\right)\left(8x^3+6x^2+3x+1\right)\)

\(=\left(x-1\right)\left[\left(8x^3+1\right)+\left(6x^2+3x\right)\right]\)

\(=\left(x-1\right)\left[\left(2x+1\right)\left(4x^2-2x+1\right)+3x\left(2x+1\right)\right]\)

\(=\left(x-1\right)\left(2x+1\right)\left(4x^2+x+1\right)\)

      \(3x^2-7x+2\)

\(=3x^2-6x-x+2\)

\(=3x\left(x-2\right)-\left(x-2\right)\)

\(=\left(x-2\right)\left(3x-1\right)\)

Chúc bạn học tốt.

18 tháng 11 2018

toàn bài cơ bản nha bn, kb vs mik thì mik sẽ giải giúp

18 tháng 11 2018

a/\(x^2-y^2-4x+4\)

\(=\left(x^2-4x+4\right)-y^2\)

\(=\left(x-2\right)^2-y^2\)

\(\left(x-2+y\right)\left(x-2-y\right)\)

P/S : các bài khác tương tự dạng thoy ạ =( cùng phân hs vs hằng đẳng thức

4 tháng 10 2019

a, x3 - 19x - 30

= x3 - 5x2 + 5x2 - 25x + 6x + 30

= (x2 + 5x + 6)(x - 5)

= (x + 3)(x + 2)(x - 5)

d, x4 - 2x2 - 24

= x4 - 6x2 + 6x2 - 24

= (x2 - 6)(x + 4)