Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đổi dấu – (4yx2 + yz2)(z – y2) = (4yx2 + yz2)( y2 – z), ta có thừa số
(y2 – z) chung:
C = (y2 – z)(2x2y – yz) – (4yx2 + yz2)(z – y2) + 6x2z(y2 – z)
= (y2 – z)(2x2y – yz) + (4yx2 + yz2)( y2 – z) + 6x2z(y2 – z)
= (y2 – z)[( 2x2y – yz ) + (4yx2 + yz2) + 6x2z]
= (y2 – z)[ 2x2y + 4yx2 + 6x2z]
= (y2 – z)[ 2xy2 + 4yx2 + 6x2z]
= (y2 – z)[ 2x2(y + 2y + 3z)]
= (y2 – z)[ 2x2(3y + 3z)]
= (y2 – z) 2x2 .3(y + z)
= 6x2(y2 – z)(y + z).
a) 7x2 - 4x
= x ( 7x - 4 )
b) 5x2 - 2x + 10 xy - 4y
= x ( 5x - 2 ) + 2y ( 5x - 2 )
= ( x + 2y ) ( 5x - 2 )
Ta nhân thấy nghiệm của f(x) nếu có thì x = , chỉ có f(2) = 0 nên x = 2 là nghiệm của f(x) nên f(x) có một nhân tử là x – 2. Do đó ta tách f(x) thành các nhóm có xuất hiện một nhân tử là x – 2
Cách 1:
x3 – x2 – 4 =(x3-2x2)+(x2-2x)+(2x-4)=x2(x-2)+x(x-2)+2(x-2)=(x-2)(x2+x+2)
Cách 2:
(x-2)[(x2+2x+4)-(x+2)]=(x-2)(x2+x+2)
x3-x2-4=x3-8-x2+4=(x3-8)-(x2-4)=(x-2)(x2+2x+4)-(x-2)(x+2)
a) \(=x^2-\left(2y\right)^2=\left(x-2y\right)\left(x+2y\right)\)
b) \(=x^2-\left(3y\right)^2=\left(x-3y\right)\left(x+3y\right)\)
c) \(=\left(2x-1\right)^2-\left(2y\right)^2=\left(2x-1-2y\right)\left(2x-1+2y\right)\)
d) \(=x^2-10xy+\left(5y\right)^2=\left(x-5y\right)^2\)
e) \(=\left(3x\right)^2-6x+1=\left(3x-1\right)^2\)
f) \(=\left(5x\right)^2+20x+4=\left(5x+2\right)^2\)
a, x2+2xy+y2+2x+2y-15
<=> (x+y )2+2(x+y)+1-16
Đặt x+y =a
<=> a2+2a+1-42
<=> (a+1)2-42
<=> (a+5)(a-3) =>( x+y+5)(x+y-3)
b, x2-4xy+4y2-2x-4y-35
<=> (x-2y)2-2(x-2y)+1-36
Đặt (x-2y) =b
=> b2-2b+1-62
<=> (b-1)2-62
<=> (b-7)(b+5)=> (x-2y-7)(x-2y+5)
c,
a,A= x^2+2xy+y^2+2x+2y-15
= (x+y)^2+(x+y)-15
Đặt x+y=a, ta có:
A=a^2+2a-15
=a^2+2a+1-16
=(a+1)^2-4^2
=(a+1+4)(a+1-4)
=(a+5)(a-3)
Thay a=x+y, ta có: A=(x+y+5)(x+y-3).
\(1,=\left(x-2\right)\left(5-y\right)\\ 2,=2\left(x-y\right)^2-z\left(x-y\right)=\left(x-y\right)\left(2x-2y-z\right)\\ 3,=5xy\left(x-2y\right)\\ 4,=3\left(x^2-2xy+y^2-4z^2\right)=3\left[\left(x-y\right)^2-4z^2\right]\\ =3\left(x-y-2z\right)\left(x-y+2z\right)\\ 5,=\left(x+2y\right)^2-16=\left(x+2y-4\right)\left(x+2y+4\right)\\ 6,=-\left(6x^2-3x-4x+2\right)=-\left(2x-1\right)\left(3x-2\right)\\ 7,=\left(2x+y\right)\left(2x+y+x\right)=\left(2x+y\right)\left(3x+y\right)\\ 8,=\left(x-y\right)\left(x+5\right)\\ 9,=\left(x+1\right)^2-y^2=\left(x-y+1\right)\left(x+y+1\right)\\ 10,=\left(x^2-9\right)x=x\left(x-3\right)\left(x+3\right)\\ 11,=\left(x-2\right)\left(y+1\right)\\ 12,=\left(x-3\right)\left(x^2-4\right)=\left(x-3\right)\left(x-2\right)\left(x+2\right)\\ 13,=3\left(x+y\right)-\left(x+y\right)^2=\left(x+y\right)\left(3-x-y\right)\)
a) Ta có: \(5x\left(x-9\right)-x+9\)
\(=5x\left(x-9\right)-\left(x-9\right)\)
\(=\left(x-9\right)\left(5x-1\right)\)
b) Ta có: \(6x^2+7x-3\)
\(=6x^2+9x-2x-3\)
\(=3x\left(2x-3\right)-\left(2x-3\right)\)
\(=\left(2x-3\right)\left(3x-1\right)\)
d) Ta có: \(x^2-10xy+25y^2\)
\(=x^2-2\cdot x\cdot5y+\left(5y\right)^2\)
\(=\left(x-5y\right)^2\)