K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2024

\(A=2x^2-3x+x^2+5x-x^2=2x^2+2x\)

\(A=2x^2-3x+x^2+5x-x^2\)

\(=\left(2x^2+x^2-x^2\right)+\left(5x-3x\right)\)

\(=2x^2+2x\)

11 tháng 4 2020

b)

\(2x\cdot\left(2x-3\right)=\left(3-2x\right)\cdot\left(2-5x\right)\\ \Leftrightarrow-2x\cdot\left(3-2x\right)-\left(3-2x\right)\cdot\left(2-5x\right)=0\\ \Leftrightarrow\left(3-2x\right)\cdot\left(-2x-2+5x\right)=0\\ \Leftrightarrow\left(3-2x\right)\cdot\left(3x-2\right)=0\\ \Rightarrow\left[{}\begin{matrix}3-2x=0\\3x-2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\frac{3}{2}\\x=\frac{2}{3}\end{matrix}\right.\)

c)

\(2x^3+6x^2=x^2+3x\\ \Leftrightarrow2x^3+6x^2-x^2-3x=0\\ \Leftrightarrow x\cdot\left(2x^2+6x-x-3\right)=0\\ \Leftrightarrow x\cdot\left(-3+6x-x+2x^2\right)=0\\ \Leftrightarrow x\cdot\left[-3\cdot\left(1-2x\right)-x\cdot\left(1-2x\right)\right]=0\\ \Leftrightarrow x\cdot\left(-3-x\right)\cdot\left(1-2x\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\-3-x=0\\1-2x=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\x=-3\\x=\frac{1}{2}\end{matrix}\right.\)

d)

\(x^2-5x+6=0\\ \Leftrightarrow x^2-3x-2x+6=0\\ \Leftrightarrow6-2x-3x+x^2=0\\ \Leftrightarrow2\cdot\left(3-x\right)-x\cdot\left(3-x\right)=0\\ \Leftrightarrow\left(2-x\right)\cdot\left(3-x\right)=0\\ \Rightarrow\left[{}\begin{matrix}2-x=0\\3-x=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

e)

\(\left(2x+5\right)^2=\left(x+2\right)^2\\ \Leftrightarrow\left(2x+5\right)^2-\left(x+2\right)^2=0\\ \Leftrightarrow\left(2x+5+x+2\right)\cdot\left(2x+5-x-2\right)=0\\ \Leftrightarrow\left(3x+7\right)\cdot\left(x+3\right)=0\\ \Rightarrow\left[{}\begin{matrix}3x+7=0\\x+3=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\frac{7}{3}\\x=-3\end{matrix}\right.\)

11 tháng 4 2020

a) \(\left(x+3\right)\left(x+5\right)+\left(x+3\right)\left(3x-4\right)=0\)

\(\left(x+3\right)\left(x+5+1+3x-4\right)=0\)

\(\left[{}\begin{matrix}x+3=0\\x+3x=2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-3\\x=\frac{1}{2}\end{matrix}\right.\)

Mk đang hok zoom sorry nha!!!

18 tháng 7 2017

a) \(\left(4x-1\right)^2-\left(3x+2\right)\left(3x-2\right)=\left(7x-1\right)\left(x+2\right)+\left(2x+1\right)^2-\left(4x^2+7\right)\)(1)

\(\Leftrightarrow\left(16x^2-8x+1\right)-\left(9x^2-4\right)=\left(7x^2+14x-x-2\right)+\left(4x^2+4x+1\right)-\left(4x^2+7\right)\)

\(\Leftrightarrow16x^2-8x+1-9x^2+4=7x^2+13x-2+4x^2+4x+1-4x^2-7\)

\(\Leftrightarrow7x^2-8x+5=7x^2+17x-8\)

\(\Leftrightarrow7x^2-8x-7x^2-17x=-8-5\)

\(\Leftrightarrow-25x=-13\)

\(\Leftrightarrow x=\dfrac{13}{25}\)

Vậy tập nghiệm phương trình (1) là \(S=\left\{\dfrac{13}{25}\right\}\)

18 tháng 7 2017

gắp cái gì

a) Ta có: \(-3x^2\left(2x^2-\frac{1}{3}x+2\right)\)

\(=-6x^4+x^3-6x^2\)

b) Ta có: \(2xy^2\left(x-3y+xy\right)\)

\(=2x^2y^2-6xy^3+2x^2y^3\)

c) Ta có: \(\left(5x^2-4x\right)\left(x-2\right)\)

\(=5x^3-10x^2-4x^2+8x\)

\(=5x^3-14x^2+8x\)

d) Ta có: \(-\left(2-x\right)\left(2x+3\right)\)

\(=\left(x-2\right)\left(2x+3\right)\)

\(=2x^2+3x-4x-6\)

\(=2x^2-x-6\)

e) Ta có: \(\left(3x^3-2x^2+x\right):\left(-2x\right)\)

\(=\frac{-3}{2}x^2+x-\frac{1}{2}\)

f) Ta có: \(\left(15x^2y^2-21x^3y+2x^2y\right):\left(3x^2y\right)\)

\(=5y-7x+\frac{2}{3}\)

g) Hỏi đáp Toán

15 tháng 3 2020

a.=x2+1

b.=2x2+x+1

c.=(x-y-z)2

d.=2x-2

e.=x+3

27 tháng 3 2020

bạn tự trả lời đổi ticck à

22 tháng 10 2018

\(2x^3-x^2+5x+3\)

\(=2x^3+x^2-2x^2-x+6x^2+3\)

\(=x^2\left(2x+1\right)-x\left(2x+1\right)+3\left(2x+1\right)\)

\(=\left(2x+1\right)\left(x^2-x+3\right)\)

16 tháng 10 2020

a, 15x5 - 10x4 + 5x3 + 10x2

b, -2a5x4 + 10a3x2 - 6a2x

c, 6x4 - 2x3 - 15x2 + 23x - 6

d, a5 - b5

16 tháng 10 2020

mk rút gọn luôn ko làm từng bc vì dài nhé :D

13 tháng 7 2018

Mình giải từ cuối lên , mình giải dần -)

n,  <=> x(2x-1)-3(2x-1)=0

<=> (x-3)(2x-1)=0

<=> x= 3 hoặc x= 1/2

m, <=> (x+2)(x2-3x+5)-x2(x+2)=0

<=> (x+2)(x2-3x+5-x2)=0

<=> (x+2)(5-3x)=0

=> x= -2 hoặc5/3

13 tháng 7 2018

trả lời chi tiết giúp mình với

28 tháng 7 2017

1, \(A=3x^2+5x-1\)

\(=3\left(x^2+\dfrac{5}{3}x-\dfrac{1}{3}\right)\)

\(=3\left(x^2+\dfrac{5}{6}.x.2+\dfrac{25}{36}-\dfrac{37}{36}\right)\)

\(=3\left(x+\dfrac{5}{6}\right)^2-\dfrac{37}{12}\ge\dfrac{-37}{12}\)

Dấu " = " khi \(3\left(x+\dfrac{5}{6}\right)^2=0\Leftrightarrow x=\dfrac{-5}{6}\)

Vậy \(MIN_A=\dfrac{-37}{12}\) khi \(x=\dfrac{-5}{6}\)

2,3 tương tự

4, \(A=2x^2+7x\)

\(=2\left(x^2+\dfrac{7}{4}.x.2+\dfrac{49}{16}-\dfrac{49}{16}\right)\)

\(=2\left(x+\dfrac{7}{4}\right)^2-\dfrac{49}{8}\ge\dfrac{-49}{8}\)

Dấu " = " khi \(2\left(x+\dfrac{7}{4}\right)^2=0\Leftrightarrow x=\dfrac{-7}{4}\)

Vậy \(MIN_A=\dfrac{-49}{8}\) khi \(x=\dfrac{-7}{4}\)

5, 6 tương tự

7, \(A=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)

\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

\(=\left(x^2+5x\right)^2-36\ge-36\)

Dấu " = " khi \(\left(x^2+5x\right)^2=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)

Vậy \(MIN_A=-36\) khi x = 0 hoặc x = -5

8, \(A=x^2-4x+y^2-8x+6\)

\(=x^2-4x+4+y^2-8x+16-14\)

\(=\left(x-2\right)^2+\left(y-4\right)^2-14\ge-14\)

Dấu " = " khi \(\left\{{}\begin{matrix}\left(x-2\right)^2=0\\\left(y-4\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=4\end{matrix}\right.\)

Vậy \(MIN_A=-14\) khi x = 2 và y = 4