Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)
\(2x\cdot\left(2x-3\right)=\left(3-2x\right)\cdot\left(2-5x\right)\\ \Leftrightarrow-2x\cdot\left(3-2x\right)-\left(3-2x\right)\cdot\left(2-5x\right)=0\\ \Leftrightarrow\left(3-2x\right)\cdot\left(-2x-2+5x\right)=0\\ \Leftrightarrow\left(3-2x\right)\cdot\left(3x-2\right)=0\\ \Rightarrow\left[{}\begin{matrix}3-2x=0\\3x-2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\frac{3}{2}\\x=\frac{2}{3}\end{matrix}\right.\)
c)
\(2x^3+6x^2=x^2+3x\\ \Leftrightarrow2x^3+6x^2-x^2-3x=0\\ \Leftrightarrow x\cdot\left(2x^2+6x-x-3\right)=0\\ \Leftrightarrow x\cdot\left(-3+6x-x+2x^2\right)=0\\ \Leftrightarrow x\cdot\left[-3\cdot\left(1-2x\right)-x\cdot\left(1-2x\right)\right]=0\\ \Leftrightarrow x\cdot\left(-3-x\right)\cdot\left(1-2x\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\-3-x=0\\1-2x=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\x=-3\\x=\frac{1}{2}\end{matrix}\right.\)
d)
\(x^2-5x+6=0\\ \Leftrightarrow x^2-3x-2x+6=0\\ \Leftrightarrow6-2x-3x+x^2=0\\ \Leftrightarrow2\cdot\left(3-x\right)-x\cdot\left(3-x\right)=0\\ \Leftrightarrow\left(2-x\right)\cdot\left(3-x\right)=0\\ \Rightarrow\left[{}\begin{matrix}2-x=0\\3-x=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
e)
\(\left(2x+5\right)^2=\left(x+2\right)^2\\ \Leftrightarrow\left(2x+5\right)^2-\left(x+2\right)^2=0\\ \Leftrightarrow\left(2x+5+x+2\right)\cdot\left(2x+5-x-2\right)=0\\ \Leftrightarrow\left(3x+7\right)\cdot\left(x+3\right)=0\\ \Rightarrow\left[{}\begin{matrix}3x+7=0\\x+3=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\frac{7}{3}\\x=-3\end{matrix}\right.\)
a) \(\left(x+3\right)\left(x+5\right)+\left(x+3\right)\left(3x-4\right)=0\)
➜\(\left(x+3\right)\left(x+5+1+3x-4\right)=0\)
➜\(\left[{}\begin{matrix}x+3=0\\x+3x=2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-3\\x=\frac{1}{2}\end{matrix}\right.\)
Mk đang hok zoom sorry nha!!!
a) \(\left(4x-1\right)^2-\left(3x+2\right)\left(3x-2\right)=\left(7x-1\right)\left(x+2\right)+\left(2x+1\right)^2-\left(4x^2+7\right)\)(1)
\(\Leftrightarrow\left(16x^2-8x+1\right)-\left(9x^2-4\right)=\left(7x^2+14x-x-2\right)+\left(4x^2+4x+1\right)-\left(4x^2+7\right)\)
\(\Leftrightarrow16x^2-8x+1-9x^2+4=7x^2+13x-2+4x^2+4x+1-4x^2-7\)
\(\Leftrightarrow7x^2-8x+5=7x^2+17x-8\)
\(\Leftrightarrow7x^2-8x-7x^2-17x=-8-5\)
\(\Leftrightarrow-25x=-13\)
\(\Leftrightarrow x=\dfrac{13}{25}\)
Vậy tập nghiệm phương trình (1) là \(S=\left\{\dfrac{13}{25}\right\}\)
a) Ta có: \(-3x^2\left(2x^2-\frac{1}{3}x+2\right)\)
\(=-6x^4+x^3-6x^2\)
b) Ta có: \(2xy^2\left(x-3y+xy\right)\)
\(=2x^2y^2-6xy^3+2x^2y^3\)
c) Ta có: \(\left(5x^2-4x\right)\left(x-2\right)\)
\(=5x^3-10x^2-4x^2+8x\)
\(=5x^3-14x^2+8x\)
d) Ta có: \(-\left(2-x\right)\left(2x+3\right)\)
\(=\left(x-2\right)\left(2x+3\right)\)
\(=2x^2+3x-4x-6\)
\(=2x^2-x-6\)
e) Ta có: \(\left(3x^3-2x^2+x\right):\left(-2x\right)\)
\(=\frac{-3}{2}x^2+x-\frac{1}{2}\)
f) Ta có: \(\left(15x^2y^2-21x^3y+2x^2y\right):\left(3x^2y\right)\)
\(=5y-7x+\frac{2}{3}\)
g)
a, 15x5 - 10x4 + 5x3 + 10x2
b, -2a5x4 + 10a3x2 - 6a2x
c, 6x4 - 2x3 - 15x2 + 23x - 6
d, a5 - b5
Mình giải từ cuối lên , mình giải dần -)
n, <=> x(2x-1)-3(2x-1)=0
<=> (x-3)(2x-1)=0
<=> x= 3 hoặc x= 1/2
m, <=> (x+2)(x2-3x+5)-x2(x+2)=0
<=> (x+2)(x2-3x+5-x2)=0
<=> (x+2)(5-3x)=0
=> x= -2 hoặc5/3
1, \(A=3x^2+5x-1\)
\(=3\left(x^2+\dfrac{5}{3}x-\dfrac{1}{3}\right)\)
\(=3\left(x^2+\dfrac{5}{6}.x.2+\dfrac{25}{36}-\dfrac{37}{36}\right)\)
\(=3\left(x+\dfrac{5}{6}\right)^2-\dfrac{37}{12}\ge\dfrac{-37}{12}\)
Dấu " = " khi \(3\left(x+\dfrac{5}{6}\right)^2=0\Leftrightarrow x=\dfrac{-5}{6}\)
Vậy \(MIN_A=\dfrac{-37}{12}\) khi \(x=\dfrac{-5}{6}\)
2,3 tương tự
4, \(A=2x^2+7x\)
\(=2\left(x^2+\dfrac{7}{4}.x.2+\dfrac{49}{16}-\dfrac{49}{16}\right)\)
\(=2\left(x+\dfrac{7}{4}\right)^2-\dfrac{49}{8}\ge\dfrac{-49}{8}\)
Dấu " = " khi \(2\left(x+\dfrac{7}{4}\right)^2=0\Leftrightarrow x=\dfrac{-7}{4}\)
Vậy \(MIN_A=\dfrac{-49}{8}\) khi \(x=\dfrac{-7}{4}\)
5, 6 tương tự
7, \(A=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)
\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
\(=\left(x^2+5x\right)^2-36\ge-36\)
Dấu " = " khi \(\left(x^2+5x\right)^2=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
Vậy \(MIN_A=-36\) khi x = 0 hoặc x = -5
8, \(A=x^2-4x+y^2-8x+6\)
\(=x^2-4x+4+y^2-8x+16-14\)
\(=\left(x-2\right)^2+\left(y-4\right)^2-14\ge-14\)
Dấu " = " khi \(\left\{{}\begin{matrix}\left(x-2\right)^2=0\\\left(y-4\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=4\end{matrix}\right.\)
Vậy \(MIN_A=-14\) khi x = 2 và y = 4
\(A=2x^2-3x+x^2+5x-x^2=2x^2+2x\)
\(A=2x^2-3x+x^2+5x-x^2\)
\(=\left(2x^2+x^2-x^2\right)+\left(5x-3x\right)\)
\(=2x^2+2x\)