Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề sai nhé .Sửu lại
\(x^2-4x^2y^2+4+4x\)
\(=\left(x^2+4x+4\right)-4x^2y^2\)
\(=\left(x+2\right)^2-\left(2xy\right)^2\)
\(=\left(x+2+2xy\right)\left(x+2-2xy\right)\)
với đa thức bậc 2 ax2 + bx + c bạn tách thành ax2 + mx + nx + c sao cho m + n = b và mn = ac
còn 1 phương pháp nữa đó là tìm nghiệm.
nếu đa thức có nghiệm là x1, x2,...xn thì sẽ phân tích đc thành (x - x1)(x - x2)...(x - xn)
x3 + 3x - 4 = x3 - x + 4x - 4
= x(x2 - 1) + 4(x - 1)
= x(x + 1)(x - 1) + 4(x - 1)
= (x - 1) [ x(x + 1) + 4 ]
=(x - 1)(x2 + x + 4)
\(x^3+3x-4\)
\(=\left(x^3-x^2\right)+\left(x^2-x\right)+\left(4x-4\right)\)
\(=\left(x-1\right)\left(x^2+x+4\right)\)
Bài 1 :
\(x^2-6x+8=x^2-2x-4x+8=x\left(x-2\right)-4\left(x-2\right)=\left(x-4\right)\left(x-2\right)\)
Bài 2 :
\(x^8+x^7+1=x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1-x^6-x^5-x^4-x^3-x^2-x\)
\(=x^6\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)+x^2+x+1-x^4\left(x^2+x+1\right)-x\left(x^2+x+1\right)\)
=\(\left(x^2+x+1\right)\left(x^6+x^3+1-x^4-x\right)\)
Tick đúng nha
= x5 +x4 + x3 + x2 +x +1 - x4 - x3 - x2 = x3(x2 +x +1) + (x2 + x +1) - x2(x2 +x +1)
=(x2 +x +1)( x3 - x2 +1)
\(=\left(3x+1\right)^3+\dfrac{1}{3}\left(3x+1\right)=\left(3x+1\right)\left(9x^2+6x+1+\dfrac{1}{3}\right)\\ =\left(3x+1\right)\left(9x^2+6x+\dfrac{4}{3}\right)\)