Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\left(x^2+x\right)^2-14\left(x^2+x\right)+24\)
Đặt \(x^2+x=t\), ta có:
\(A=t^2-14t+24\)
\(=t^2-2t-12t+24\)
\(=t\left(t-2\right)-12\left(t-2\right)\)
\(=\left(t-2\right)\left(t-12\right)\)
\(=\left(x^2+x-2\right)\left(x^2+x-12\right)\)
\(B=\left(x^2+x\right)^2+4x^2+4x-12\)
\(=\left(x^2+x\right)^2+4\left(x^2+x\right)-12\)
Đặt \(x^2+x=t\), ta có:
\(B=t^2+4t-12\)
\(=t^2+6t-2t-12\)
\(=t\left(t+6\right)-2\left(t+6\right)\)
\(=\left(t+6\right)\left(t-2\right)\)
\(=\left(x^2+x+6\right)\left(x^2+x-2\right)\)
\(C=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\)
Đặt \(x^2+5x+4=t\), ta có:
\(C=t\left(t+2\right)+1\)
\(=t^2+2t+1\)
\(=\left(t+1\right)^2\)
\(=\left(x^2+5x+4+1\right)^2\)
\(=\left(x^2+5x+5\right)^2\)
\(D=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)
\(=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)
Đặt \(x^2+8x+7=t\), ta có:
\(D=t\left(t+8\right)+15\)
\(=t^2+8t+15\)
\(=t^2+3t+5t+15\)
\(=t\left(t+3\right)+5\left(t+3\right)\)
\(=\left(t+3\right)\left(t+5\right)\)
\(=\left(x^2+8x+7+3\right)\left(x^2+8x+7+5\right)\)
\(=\left(x^2+8x+10\right)\left(x^2+8x+12\right)\)
\(F=\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)
Đặt \(x^2+x+1=t\), ta có:
\(F=t\left(t+1\right)-12\)
\(=t^2+t-12\)
\(=t^2+4t-3t-12\)
\(=t\left(t+4\right)-3\left(t+4\right)\)
\(=\left(t+4\right)\left(t-3\right)\)
\(=\left(x^2+x+1+4\right)\left(x^2+x+1-3\right)\)
\(=\left(x^2+x+5\right)\left(x^2+x-2\right)\)
\(E=x^4+2x^3+5x^2+4x-12\)
\(=x^4-x^3+3x^3-3x^2+8x^2-8x+12x-12\)
\(=x^3\left(x-1\right)+3x^2\left(x-1\right)+8x\left(x-1\right)+12\left(x-1\right)\)
\(=\left(x-1\right)\left(x^3+3x^2+8x+12\right)\)
\(=\left(x-1\right)\left(x^3+2x^2+x^2+2x+6x+12\right)\)
\(=\left(x-1\right)\left[x^2\left(x+2\right)+x\left(x+2\right)+6\left(x+2\right)\right]\)
\(=\left(x-1\right)\left(x+2\right)\left(x^2+x+6\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) x2 + 6x + 9 = x2 + 2 . x . 3 + 32 = (x + 3)2
b) 10x – 25 – x2 = -(-10x + 25 +x2) = -(25 – 10x + x2)
= -(52 – 2 . 5 . x – x2) = -(5 – x)2
c) 8x3 - 1/8 = (2x)3 – (1/2)3 = (2x - 1/2)[(2x)2 + 2x . 12 + (1/2)2]
= (2x - 1/2)(4x2 + x + 1/4)
d)1/25x2 – 64y2 = (1/5x)2(1/5x)2- (8y)2 = (1/5x + 8y)(1/5x - 8y)
![](https://rs.olm.vn/images/avt/0.png?1311)
dat \(x^2-2x+2=y\)
ta co pt
\(y^4+20x^2y^2+64x^4\)
\(=\left(8x^2\right)^2+2.8x^2.\frac{10}{8}y^2+\left(\frac{10^{ }}{8^{ }}y^2\right)^2-\frac{36}{64}y^4\)
\(=\left(8x^2+\frac{10}{8}y^2\right)^2-\left(\frac{6}{8}y^2\right)^2\)
\(=\left(8x^2+\frac{y^2}{2}\right)\left(8x^2+2y^2\right)\)
bạn thay y nữa là xong
\(\left(x^2-2x+2\right)^4+20x^2\left(x^2-2x+2\right)^2+64x^4\)
\(=\left(x^2-2x+2\right)^4+20x^2\left(x^2-2x+2\right)^2+100x^4-36x^4\)
\(=\left[\left(x^2-2x+2\right)^2+10x^2\right]^2-36x^4\)
\(=\left(x^4-4x^3+18x^2-8x+4\right)^2-\left(6x^2\right)^2\)
\(=\left(x^4-4x^3+24x^2-8x+4\right)\left(x^4-4x^3+12x^2-8x+4\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(x^2-2x+2\right)^4+20x^2\left(x^2-2x+2\right)+64x^4\)
=\(\left[\left(x^2-2x+2\right)^4+2.10x^2\left(x^2-2x+2\right)^2+100x^4\right]\)-100x4+64x2
=\(\left[\left(x^2-2x+2\right)^2+10x^2\right]^2-36x^2\)
=\(\left[\left(x^2-2x+2\right)^2+4x^2\right].\left[\left(x^2-2x+2\right)^2+16x^2\right]\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1.
a) x( 8x - 2 ) - 8x2 + 12 = 0
<=> 8x2 - 2x - 8x2 + 12 = 0
<=> 12 - 2x = 0
<=> 2x = 12
<=> x = 6
b) x( 4x - 5 ) - ( 2x + 1 )2 = 0
<=> 4x2 - 5x - ( 4x2 + 4x + 1 ) = 0
<=> 4x2 - 5x - 4x2 - 4x - 1 = 0
<=> -9x - 1 = 0
<=> -9x = 1
<=> x = -1/9
c) ( 5 - 2x )( 2x + 7 ) = ( 2x - 5 )( 2x + 5 )
<=> -4x2 - 4x + 35 = 4x2 - 25
<=> -4x2 - 4x + 35 - 4x2 + 25 = 0
<=> -8x2 - 4x + 60 = 0
<=> -8x2 + 20x - 24x + 60 = 0
<=> -4x( 2x - 5 ) - 12( 2x - 5 ) = 0
<=> ( 2x - 5 )( -4x - 12 ) = 0
<=> \(\orbr{\begin{cases}2x-5=0\\-4x-12=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-3\end{cases}}\)
d) 64x2 - 49 = 0
<=> ( 8x )2 - 72 = 0
<=> ( 8x - 7 )( 8x + 7 ) = 0
<=> \(\orbr{\begin{cases}8x-7=0\\8x+7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{8}\\x=-\frac{7}{8}\end{cases}}\)
e) ( x2 + 6x + 9 )( x2 + 8x + 7 ) = 0
<=> ( x + 3 )2( x2 + x + 7x + 7 ) = 0
<=> ( x + 3 )2 [ x( x + 1 ) + 7( x + 1 ) ] = 0
<=> ( x + 3 )2( x + 1 )( x + 7 ) = 0
<=> x = -3 hoặc x = -1 hoặc x = -7
g) ( x2 + 1 )( x2 - 8x + 7 ) = 0
Vì x2 + 1 ≥ 1 > 0 với mọi x
=> x2 - 8x + 7 = 0
=> x2 - x - 7x + 7 = 0
=> x( x - 1 ) - 7( x - 1 ) = 0
=> ( x - 1 )( x - 7 ) = 0
=> \(\orbr{\begin{cases}x-1=0\\x-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=7\end{cases}}\)
Bài 2.
a) ( x - 1 )2 - ( x - 2 )( x + 2 )
= x2 - 2x + 1 - ( x2 - 4 )
= x2 - 2x + 1 - x2 + 4
= -2x + 5
b) ( 3x + 5 )2 + ( 26x + 10 )( 2 - 3x ) + ( 2 - 3x )2
= 9x2 + 30x + 25 - 78x2 + 22x + 20 + 9x2 - 12x + 4
= ( 9x2 - 78x2 + 9x2 ) + ( 30x + 22x - 12x ) + ( 25 + 20 + 4 )
= -60x2 + 40x2 + 49
d) ( x + y )2 - ( x + y - 2 )2
= [ x + y - ( x + y - 2 ) ][ x + y + ( x + y - 2 ) ]
= ( x + y - x - y + 2 )( x + y + x + y - 2 )
= 2( 2x + 2y - 2 )
= 4x + 4y - 4
Bài 3.
A = 3x2 + 18x + 33
= 3( x2 + 6x + 9 ) + 6
= 3( x + 3 )2 + 6 ≥ 6 ∀ x
Đẳng thức xảy ra <=> x + 3 = 0 => x = -3
=> MinA = 6 <=> x = -3
B = x2 - 6x + 10 + y2
= ( x2 - 6x + 9 ) + y2 + 1
= ( x - 3 )2 + y2 + 1 ≥ 1 ∀ x,y
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-3=0\\y^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=0\end{cases}}\)
=> MinB = 1 <=> x = 3 ; y = 0
C = ( 2x - 1 )2 + ( x + 2 )2
= 4x2 - 4x + 1 + x2 + 4x + 4
= 5x2 + 5 ≥ 5 ∀ x
Đẳng thức xảy ra <=> 5x2 = 0 => x = 0
=> MinC = 5 <=> x = 0
D = -2/7x2 - 8x + 7 ( sửa thành tìm Max )
Để D đạt GTLN => 7x2 - 8x + 7 đạt GTNN
7x2 - 8x + 7
= 7( x2 - 8/7x + 16/49 ) + 33/7
= 7( x - 4/7 )2 + 33/7 ≥ 33/7 ∀ x
Đẳng thức xảy ra <=> x - 4/7 = 0 => x = 4/7
=> MaxC = \(\frac{-2}{\frac{33}{7}}=-\frac{14}{33}\)<=> x = 4/7
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1 :
a) \(x^4-4x^2-4x-1\)
\(=x^4-\left(4x^2+4x+1\right)\)
\(=x^4-\left(2x+1\right)^2\)
\(=\left(x^2-2x-1\right)\left(x^2+2x+1\right)\)
b) \(x^2+2x-15\)
\(=x^2+2x+1-16\)
\(=\left(x+1\right)^2-4^2\)
\(=\left(x+1+4\right)\left(x+1-4\right)=\left(x+5\right)\left(x-3\right)\)
c) \(x^3y-2x^2y^2+5xy\)
\(=xy\left(x^2-2xy+5\right)\)
B2:
a) \(2\left(x-1\right)^2-\left(2x+3\right)\left(2x-3\right)\)
\(=2\left(x^2-2x+1\right)-\left(4x^2-9\right)\)
\(=2x^2-4x+2-4x^2+9\)
\(=-2x^2-4x+11\)
b) \(\left(x+3\right)^2-2\left(x+3\right)\left(x-3\right)+\left(x-3\right)^2\)
\(=\left(x+3-x+3\right)^2=6^2=36\)
c) \(4\left(x-1\right)\left(x+3\right)+5\left(2x+1\right)^2-2\left(5-3x\right)^2\)
\(=4\left(x^2+2x-3\right)+5\left(4x^2+4x+1\right)-2\left(9x^2-30x+25\right)\)
\(=4x^2+8x-12+20x^2+20x+5-18x^2+60x-50\)
\(=6x^2+88x-57\)
![](https://rs.olm.vn/images/avt/0.png?1311)
bÀI LÀM
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^2-2x-4y^2-4y\)
\(=\left(x^2-4y^2\right)-\left(2x+4y\right)\)
\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y-2\right)\)
\begin{array}{l} a){\left( {ab - 1} \right)^2} + {\left( {a + b} \right)^2}\\ = {a^2}{b^2} - 2ab + 1 + {a^2} + 2ab + {b^2}\\ = {a^2}{b^2} + 1 + {a^2} + {b^2}\\ = {a^2}\left( {{b^2} + 1} \right) + \left( {{b^2} + 1} \right)\\ = \left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)\\ c){x^3} - 4{x^2} + 12x - 27\\ = {x^3} - 27 + \left( { - 4{x^2} + 12x} \right)\\ = \left( {x - 3} \right)\left( {{x^2} + 3x + 9} \right) - 4x\left( {x - 3} \right)\\ = \left( {x - 3} \right)\left( {{x^2} + 3x + 9 - 4x} \right)\\ = \left( {x - 3} \right)\left( {{x^2} - x + 9} \right)\\ b){x^3} + 2{x^2} + 2x + 1\\ = {x^3} + 2{x^2} + x + x + 1\\ = x\left( {{x^2} + 2x + 1} \right) + \left( {x + 1} \right)\\ = x{\left( {x + 1} \right)^2} + \left( {x + 1} \right)\\ = \left( {x + 1} \right)\left( {x\left( {x + 1} \right) + 1} \right)\\ = \left( {x + 1} \right)\left( {{x^2} + x + 1} \right)\\ d){x^4} - 2{x^3} + 2x - 1\\ = {x^4} - 2{x^3} + {x^2} - {x^2} + 2x - 1\\ = {x^2}\left( {{x^2} - 2x + 1} \right) - \left( {{x^2} - 2x + 1} \right)\\ = \left( {{x^2} - 2x + 1} \right)\left( {{x^2} - 1} \right)\\ = {\left( {x - 1} \right)^2}\left( {x - 1} \right)\left( {x + 1} \right)\\ = {\left( {x - 1} \right)^3}\left( {x + 1} \right)\\ e){x^4} + 2{x^3} + 2{x^2} + 2x + 1\\ = {x^4} + 2{x^3} + {x^2} + {x^2} + 2x + 1\\ = {x^2}\left( {{x^2} + 2x + 1} \right) + \left( {{x^2} + 2x + 1} \right)\\ = \left( {{x^2} + 2x + 1} \right)\left( {{x^2} + 1} \right)\\ = {\left( {x + 1} \right)^2}\left( {{x^2} + 1} \right) \end{array} |
d) \(x^5+x-1\)
\(=x^5-x^2+x^2+x-1\)
\(=\left(x^5-x^2\right)+\left(x^2+x-1\right)\)
\(=x^2.\left(x^3-1\right)+\left(x^2+x-1\right)\)
\(=x^2.\left(x-1\right).\left(x^2+x-1\right)+\left(x^2+x-1\right)\)
\(=\left[x^2.\left(x-1\right)-1\right].\left(x^2+x-1\right)\)
\(=\left(x^3-x^2-1\right).\left(x^2+x-1\right)\)
Chúc bạn học tốt!