Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^3-b^3+3a^2+3ab+b^2\)
\(=\left(a-b\right)\left(a^2+ab+b^2\right)+3\left(a^2+ab+b^2\right)\)
\(=\left(a-b+3\right)\left(a^2+ab+b^2\right)\)
\(-2x^2+7x-3\)
\(=-2x^2+6x+x-3\)
\(=-2x\left(x-3\right)+\left(x-3\right)\)
\(=\left(x-3\right)\left(-2x+1\right)\)
\(x^3-7x-6=x^3+3x^2+2x-3x^2-9x-6\)
\(=x\left(x^2+3x+2\right)-3\left(x^2+3x+2\right)\)
\(=\left(x-3\right)\left(x^2+3x+2\right)\)
\(=\left(x-3\right)\left(x^2+2x+x+2\right)\)
\(=\left(x-3\right)\left[x\left(x+2\right)+\left(x+2\right)\right]\)
\(=\left(x-3\right)\left(x+1\right)\left(x+2\right)\)
x-3=0 x=3 | x+1=0 x=-1 | x+2=0 x=-2 |
Vì mình mới họ định lí mới nên minhfm uốn làm thử nếu cậu không hiểu tì hỏi mình để mình làm cách bình thường .
a ) Áp dụng định lí Bezout :
Đặt \(f\left(x\right)=x^3-7x-6,\) ta thấy \(f\left(-1\right)=0\) nên \(-1\) là một ước của \(f\left(x\right)\).
Vậy \(f\left(x\right)\) chia hết cho \(\left(x+1\right)\). Ta có : \(f\left(x\right)=\left(x+1\right)\left(x^2-x-6\right)\)
\(x^2-x-6=\left(x+2\right)\left(x-3\right)\).
Kết quả \(f\left(x\right)=\left(x+1\right)\left(x+2\right)\left(x-3\right)\)
b ) Áp dụng định lí Bezout :
Đặt \(f\left(x\right)=x^3-19x-30.\)Xét một số ước của 30 , ta được \(f\left(-2\right)=0\).
Ta chia \(f\left(x\right)\) cho \(\left(x+2\right);f\left(x\right)=\left(x+2\right)\left(x^2-2x-15\right)\)
\(x^2-2x-15\) nhận \(x=5\) làm nghiệm .
Do vậy \(f\left(x\right)=\left(x+2\right)\left(x+3\right)\left(x-5\right)\)
Chúc bạn học tốt
=2