K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2018

\(x^8+x^7+1=x^8+x^7-x^2-x+x^2+x+1\)

\(=x^7\left(x+1\right)-x\left(x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x+1\right)\left(x^7-x\right)+\left(x^2+x+1\right)\)

\(=x.\left(x+1\right)\left(x^6-1\right)+\left(x^2+x+1\right)\)

\(=x\cdot\left(x+1\right)\left(x^3-1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\)

\(=x\cdot\left(x+1\right)\left(x-1\right)\left(x^2+x+1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left[x.\left(x^2-1\right)\left(x^3+1\right)+1\right]\)

\(=\left(x^2+x+1\right)\left(x^6-x^4+x^3-x+1\right)\)

AH
Akai Haruma
Giáo viên
3 tháng 10 2018

1)

Biểu thức không phân tích được thành nhân tử. Sửa thành:

\(x^2-5x-14=x^2+2x-7x-14\)

\(=x(x+2)-7(x+2)=(x-7)(x+2)\)

2)

\(2x^2+x-6=2x^2+4x-3x-6\)

\(=2x(x+2)-3(x+2)=(2x-3)(x+2)\)

3)

\(15x^2+7x-12\) (biểu thức không phân tích đc thành nhân tử)

4)

\(x^2+11x+30=x^2+5x+6x+30\)

\(=x(x+5)+6(x+5)=(x+6)(x+5)\)

5) \(81x^4+1\) (biểu thức không phân tích được thành nhân tử)

10 tháng 1 2018

1 ) \(\left(x-4\right)^2-25=0\)

\(\Leftrightarrow\left(x-4-5\right)\left(x-4+5\right)=0\)

\(\Leftrightarrow\left(x-9\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=9\\x=-1\end{matrix}\right.\)

2 ) \(\left(x-3\right)^2-\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(x-3+x-1\right)\left(x-3-x+1\right)=0\)

\(\Leftrightarrow-2\left(2x-4\right)=0\)

\(\Leftrightarrow x=2.\)

3 ) \(\left(x^2-4\right)\left(2x+3\right)=\left(x^2-4\right)\left(x-1\right)\)

\(\Leftrightarrow\left(x^2-4\right)\left(2x+3-x+1\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\\x=-4\end{matrix}\right.\)

4 ) \(\left(x^2-1\right)-\left(x+1\right)\left(2-3x\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-1-2+3x\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(4x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{3}{4}\end{matrix}\right.\)

5 ) \(x^3+x^2+x+1=0\)

\(\Leftrightarrow\left(x^2+1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2=-1\left(loại\right)\\x=-1.\end{matrix}\right.\)

6 ) \(x^3+x^2-x-1=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

7 ) \(2x^3+3x^2+6x+5=0\)

\(\Leftrightarrow2x^3+2x^2+x^2+x+5x+5=0\)

\(\Leftrightarrow2x^2\left(x+1\right)+x\left(x+1\right)+5\left(x+1\right)=0\)

\(\Leftrightarrow\left(2x^2+x+5\right)\left(x+1\right)=0\)

\(\Leftrightarrow x=-1.\)

8 ) \(x^4-4x^3-19x^2+106x-120=0\)

\(\Leftrightarrow x^4-4x^3-19x^2+76x+30x-120=0\)

\(\Leftrightarrow x^3\left(x-4\right)-19x\left(x-4\right)+30\left(x-4\right)=0\)

\(\Leftrightarrow\left(x^3-19x+30\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left(x^3-8-19x+38\right)\left(x-4\right)\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+4x+23\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)

9 ) \(\left(x^2-3x+2\right)\left(x^2+15x+56\right)+8=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-1\right)\left(x+7\right)\left(x+8\right)+8=0\)

\(\Leftrightarrow\left(x^2+7x-x-7\right)\left(x^2+8x-2x-16\right)+8=0\)

\(\Leftrightarrow\left(x^2+6x-7\right)\left(x^2+6x-16\right)+8=0\)

Đặt \(x^2+6x-7=t\)

\(\Leftrightarrow t\left(t-9\right)+8=0\)

\(\Leftrightarrow t^2-9t+8=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=8\\t=1\end{matrix}\right.\)

Khi t = 8 \(\Leftrightarrow x^2+6x-7=8\Leftrightarrow x^2+6x-15\Leftrightarrow\left[{}\begin{matrix}x=-3+2\sqrt{6}\\x=-3-2\sqrt{6}\end{matrix}\right.\)

Khi t = 1 \(\Leftrightarrow x^2+6x-7=1\Leftrightarrow x^2+6x-8=0\Leftrightarrow\left[{}\begin{matrix}x=-3+\sqrt{17}\\x=-3-\sqrt{17}\end{matrix}\right.\)

Vậy ........

28 tháng 7 2016

1.  x^3-19x-30 
=x^3-25x+6x-30 
=x(x^2-25)+6(x-5) 
=x(x+5)(x-5)+6(x-5) 
=(x-5)(x^2+5x+6) 
=(x-5)(x^2+2x+3x+6) 
=(x-5)[x(x+2)+3(x+2)] 
=(x-5)(x+2)(x+3)

28 tháng 7 2016

 2.

a + b + c = 0 
<=> (a + b + c)² = 0 
<=> a² + b² + c² + 2(ab + bc + ca) = 0 
<=> a² + b² + c² = -2(ab + bc + ca) ------------(1) 

CẦn chứng minh: 

2(a^4 + b^4 + c^4) = (a² + b² + c²)² 

<=> 2(a^4 + b^4 + c^4) = a^4 + b^4 + c^4 + 2(a²b² + b²c² + c²a²) 

<=> a^4 + b^4 + c^4 = 2(a²b² + b²c² + c²a²) 

<=> (a² + b² + c²)² = 4(a²b² + b²c² + c²a²) ---(cộng 2 vế cho 2(a²b² + b²c² + c²a²) ) 

<=> [-2(ab + bc + ca)]² = 4(a²b² + b²c² + c²a²) ----(do (1)) 

<=> 4.(a²b² + b²c² + c²a²) + 8.(ab²c + bc²a + a²bc) = 4(a²b² + b²c² + c²a²) 

<=> 8.(ab²c + bc²a + a²bc) = 0 

<=> 8abc.(a + b + c) = 0 

<=> 0 = 0 (đúng), Vì a + b + c = 0 

=> Đpcm

22 tháng 9 2020

a) x2 + x - 12 = x2 - 3x + 4x - 12 = x( x - 3 ) + 4( x - 3 ) = ( x - 3 )( x + 4 )

b) x2 - 4x - 5 = x2 + x - 5x - 5 = x( x + 1 ) - 5( x + 1 ) = ( x + 1 )( x - 5 )

c) x2 - 2x - 3 = x2 + x - 3x - 3 = x( x + 1 ) - 3( x + 1 ) = ( x + 1 )( x - 3 )

d) x2 - 2x - 8 = x2 + 2x - 4x - 8 = x( x + 2 ) - 4( x + 2 ) = ( x + 2 )( x - 4 )

e) x2 - 5x - 6 = x2 + x - 6x - 6 = x( x + 1 ) - 6( x + 1 ) = ( x + 1 )( x - 6 )

f) x2 - 6x + 8 = x- 2x - 4x + 8 = x( x - 2 ) - 4( x - 2 ) = ( x - 2 )( x - 4 )

g) x2 + 4x + 3 = x2 + x + 3x + 3 = x( x + 1 ) + 3( x + 1 ) = ( x + 1 )( x + 3 )

h) x2 - 2x - 15 = x2 + 3x - 5x - 15 = x( x + 3 ) - 5( x + 3 ) = ( x + 3 )( x - 5 )

i) x2 + 7x + 12 = x2 + 3x + 4x + 12 = x( x + 3 ) + 4( x + 3 ) = ( x + 3 )( x + 4 )

j) x2 - 5x - 14 = x2 + 2x - 7x - 14 = x( x + 2 ) - 7( x + 2 ) = ( x + 2 )( x - 7 )

28 tháng 1 2017

trên gg có

25 tháng 2 2018

bạn có thể gửi cho mih link trang đó đc k

27 tháng 5 2018

a)

A=(x^3+3x^2+3x+1)+4(x^2+2x+1)+7(x+1)

A=(x+1)^3+4(x+1)^2+7(x+1)

A=(x+1)[(x+1)^2+4(x+1)+7)]

b)

B=x^3-3x^2+4

=(x^3+x^2)-4(x^2-1)

B=(x+1)[x^2-4(x-1)]

=(x+1)[x^2-4x+4)

=(x+1)(x-2)^2

28 tháng 5 2018

c)

c=(x^3+3x^2+3x+1)-(x^2-1)

=(x+1)^3-(x-1)(x+1)[

=(x+1)[(x+1)^2-(x-1)]

C=(x+1)[(x^2+x+2)

d)

D=(x^3+x^2)+(5x^2+5x)+(6x+6)

D=(x+1)[x^2+5x+6]

D=(x+1)(x+2)(x+3)

24 tháng 10 2018

\(x^3-2x+y^3-2y=\left(x+y\right)\left(x^2-xy+y^2\right)-2\left(x+y\right)\)

\(=\left(x+y\right)\left(x^2-xy+y^2-2\right)\)

\(x^2-2xy+y^2-16=\left(x-y\right)^2-16=\left(x-y-4\right)\left(x-y+4\right)\)

theo mình đề câu c là 6x2

\(x^3+6x^2+9x-xz^2=x\left(x^2-6x+9-z^2\right)\)

\(=\left(x-3-z\right)\left(x-3+z\right)\)

\(x^2-11x+30=x^2-5x-6x+30\)

\(=x\left(x-5\right)-6\left(x-5\right)=\left(x-5\right)\left(x-6\right)\)

\(4x^2-3x-1=4x^2-4x+x-1\)

\(=4x\left(x-1\right)+x-1=\left(4x+1\right)\left(x-1\right)\)

\(9x^2-7x-2=9x^2-9x+2x-2\)

\(=9x\left(x-1\right)+2\left(x-1\right)=\left(9x+2\right)\left(x-1\right)\)

\(\left(x^2+x\right)^2-2\left(x^2+x\right)-5=\left(x^2+x-1\right)^2-4\)

\(=\left(x^2+x-3\right)\left(x^2+x+1\right)\)

còn lại lát mình làm tiếp

24 tháng 10 2018

Bài 1:

a, \(x^3-2x-y^3-2y=\left(x^3+y^3\right)-\left(2x+2y\right)\)

\(=\left(x+y\right)\left(x^2-xy+y^2\right)-2\left(x+y\right)=\left(x+y\right)\left(x^2-xy+y^2-2\right)\)

b, \(x^2-2xy+y^2-16=\left(x-y\right)^2-4^2=\left(x-y+4\right)\left(x-y-4\right)\)

c, \(x^3+6x^2+9x-xz^2=x\left(x^2+6x+9-z^2\right)\)

\(=x\left[\left(x+3\right)^2-z^2\right]=x\left(x+3+z\right)\left(x+3-z\right)\)

24 tháng 10 2018

Mỗi bài mình sẽ làm một câu mẫu ạ

Bài 1:

a) \(x^3-2x+y^3-2y\)

\(=\left(x^3+y^3\right)-\left(2x+2y\right)\)

\(=\left(x+y\right)\left(x^2-xy+y^2\right)-2\left(x+y\right)\)

\(=\left(x+y\right)\left(x^2-xy+y^2-2\right)\)

Bài 2:

a) \(x^2-11x+30\)

\(=x^2-5x-6x+30\)

\(=x\left(x-5\right)-6\left(x-5\right)\)

\(=\left(x-6\right)\left(x-5\right)\)

Bài 3:

a) \(x^2-5x+4=0\)

\(\Leftrightarrow x^2-4x-x+4=0\)

\(\Leftrightarrow x\left(x-4\right)-\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=1\end{matrix}\right.\)

28 tháng 10 2022

Bài 2: 

b: \(=4x^2-4x+x-1=\left(x-1\right)\left(4x+1\right)\)

c: \(=9x^2-9x+2x-2=\left(x-1\right)\left(9x+2\right)\)

e: Sửa đề: \(\left(x^2+3x+1\right)\left(x^2+3x+2\right)-2\)

\(=\left(x^2+3x\right)^2+3\left(x^2+3x\right)+2-2\)

\(=\left(x^2+3x\right)\left(x^2+3x+3\right)\)

\(=x\left(x+3\right)\left(x^2+3x+3\right)\)