Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)x^2.16-4xy+4y^2
<=>16.x^2-2x2y+(2y)^2
<=>16(x-2y)^2
b)x^5-x^4+x^3-x^2
<=>(x^5-x^4)+(x^3-x^2)
<=>x^4(x-1)+x^2(x-1)
<=>(x-1)(x^4+x^2)
c)x^5+x^3-x^2-1
<=>(x^5+x^3)-(x^2+1)
<=>x^3(x^2+1)-(x^2+1)
<=>(x^2+1)(x^3-1)
d)x^4-3x^3-x+3
<=>(x^4-3x^3)-(x-3)
<=>x^3(x-3)-(x_3)
<=>(x-3)(x^3-1)
\(a,x^2.16-4xy+4y^2\)
\(=16.x^2-4xy+4y^2\)
\(=16.\left[x^2-4xy+\left(2y\right)^2\right]\)
\(=16.\left(x-2y\right)^2\)
\(b,x^5-x^4+x^3-x^2\)
\(=x^4\left(x-1\right)+x^2\left(x-1\right)\)
\(=\left(x-1\right)\left(x^4+x^2\right)\)
\(=x^2\left(x-1\right)\left(x^2+1\right)\)
\(c,x^5+x^3-x^2-1\)
\(=x^3\left(x^2+1\right)-\left(x^2+1\right)\)
\(=\left(x^2+1\right)\left(x^3-1\right)\)
\(=\left(x^2+1\right)\left(x-1\right)\left(x^2+x+1\right)\)
\(d,x^4-3x^3-x+3\)
\(=x^3\left(x-3\right)-\left(x-3\right)\)
\(=\left(x-3\right)\left(x^3-1\right)\)
\(=\left(x-3\right)\left(x-1\right)\left(x^2+x+1\right)\)
\(a)\) \(x^2-2x-4y^2-4y\)
\(=\)\(\left(x^2-2x+1\right)-\left(4y^2+4y+1\right)\)
\(=\)\(\left(x-1\right)^2-\left(2y+1\right)^2\)
\(=\)\(\left(x-1-2y-1\right)\left(x-1+2y+1\right)\)
\(=\)\(\left(x-2y-2\right)\left(x+2y\right)\)
\(=\)\(2\left(x-y\right)\left(x+2y\right)\)
Chúc bạn học tốt ~
a) Ta có x2 - 2x - 4y2 - 4y
= x2 - 2x + 1 - 4y2 - 4y - 1
= (x - 1)2 - (4y2 + 4y + 1)
= (x - 1)2 - (2y + 1)2
= (x - 1 - 2y - 1)(x - 1 + 2y + 1)
= (x - 2y - 1)(x + 2y)
Đây là cách hiện đại :
\(x^4-2x^3+2x-1\)
\(=\left(x^4-1\right)-\left(2x^3-2x\right)\)
\(=\left(x^2-1\right)\left(x^2+1\right)-2x\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(\left(x^2+1\right)-2x\right)\)
\(=\left(x+1\right)\left(x-1\right)\left(\left(x^2+1\right)-2x\right)\)
a,=\(x^4-x^3-x^3+x^2-x^2+x+x-1\)
cu hai so nhom 1 nhom roi dat thua so chung la xong
b,x^4+x^3+x^3+x^2+x^2+x+x+1
cu hai so lai nhom 1 nhom va dat thua so chung
a) x2 + 6x + 9 = x2 + 2 . x . 3 + 32 = (x + 3)2
b) 10x – 25 – x2 = -(-10x + 25 +x2) = -(25 – 10x + x2)
= -(52 – 2 . 5 . x – x2) = -(5 – x)2
c) 8x3 - 1/8 = (2x)3 – (1/2)3 = (2x - 1/2)[(2x)2 + 2x . 12 + (1/2)2]
= (2x - 1/2)(4x2 + x + 1/4)
d)1/25x2 – 64y2 = (1/5x)2(1/5x)2- (8y)2 = (1/5x + 8y)(1/5x - 8y)
\(x^2-2x-4y^2-4y\)
\(=\left(x^2-4y^2\right)-\left(2x+4y\right)\)
\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y-2\right)\)
\begin{array}{l} a){\left( {ab - 1} \right)^2} + {\left( {a + b} \right)^2}\\ = {a^2}{b^2} - 2ab + 1 + {a^2} + 2ab + {b^2}\\ = {a^2}{b^2} + 1 + {a^2} + {b^2}\\ = {a^2}\left( {{b^2} + 1} \right) + \left( {{b^2} + 1} \right)\\ = \left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)\\ c){x^3} - 4{x^2} + 12x - 27\\ = {x^3} - 27 + \left( { - 4{x^2} + 12x} \right)\\ = \left( {x - 3} \right)\left( {{x^2} + 3x + 9} \right) - 4x\left( {x - 3} \right)\\ = \left( {x - 3} \right)\left( {{x^2} + 3x + 9 - 4x} \right)\\ = \left( {x - 3} \right)\left( {{x^2} - x + 9} \right)\\ b){x^3} + 2{x^2} + 2x + 1\\ = {x^3} + 2{x^2} + x + x + 1\\ = x\left( {{x^2} + 2x + 1} \right) + \left( {x + 1} \right)\\ = x{\left( {x + 1} \right)^2} + \left( {x + 1} \right)\\ = \left( {x + 1} \right)\left( {x\left( {x + 1} \right) + 1} \right)\\ = \left( {x + 1} \right)\left( {{x^2} + x + 1} \right)\\ d){x^4} - 2{x^3} + 2x - 1\\ = {x^4} - 2{x^3} + {x^2} - {x^2} + 2x - 1\\ = {x^2}\left( {{x^2} - 2x + 1} \right) - \left( {{x^2} - 2x + 1} \right)\\ = \left( {{x^2} - 2x + 1} \right)\left( {{x^2} - 1} \right)\\ = {\left( {x - 1} \right)^2}\left( {x - 1} \right)\left( {x + 1} \right)\\ = {\left( {x - 1} \right)^3}\left( {x + 1} \right)\\ e){x^4} + 2{x^3} + 2{x^2} + 2x + 1\\ = {x^4} + 2{x^3} + {x^2} + {x^2} + 2x + 1\\ = {x^2}\left( {{x^2} + 2x + 1} \right) + \left( {{x^2} + 2x + 1} \right)\\ = \left( {{x^2} + 2x + 1} \right)\left( {{x^2} + 1} \right)\\ = {\left( {x + 1} \right)^2}\left( {{x^2} + 1} \right) \end{array} |
a)\(x^3+x+2=x^3+1+x+1\)
\(=\left(x+1\right)\left(x^2-x+1\right)+\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-x+2\right)\)
b)\(x^3+3x^2-4=x^3-1+3x^2-3\)
\(=\left(x-1\right)\left(x^2+x+1\right)+3\left(x^2-1\right)\)
\(=\left(x-1\right)\left(x^2+x+1\right)+3\left(x-1\right)\left(x+1\right)\)
\(=\left(x-1\right)\left[x^2+x+1+3x+3\right]\)
\(=\left(x-1\right)\left(x+2\right)^2\)
a) x^2 - 4 + ( x - 2 )^2
= ( x- 2 )(x + 2 ) + ( x- 2)^2
= ( x - 2 ) ( x + 2 + x - 2 )
= 2x (x-2)
b) x^3 - 2x^2 + x - xy^2
= x ( x^2 - 2x + 1 - y^2)
= x [ ( x - 1 )^2 - y^2 ]
= x(x - 1 - y)( x - 1 + y )
c) x^3 - 4x^2 - 12x + 27
= x^3 + 3x^2 - 7x^2 - 21x + 9x + 27
= x^2 ( x + 3 ) - 7x ( x+ 3 ) + 9(x + 3 )
Để hai lần nha
= ( x+ 3 )(x^2 - 7x + 9 )
\(x^2-4+\left(x-2\right)^2\)
\(=\left(x-2\right)\left(x+2\right)+\left(x-2\right)^2\)
\(=\left(x-2\right)\left(x+2+x-2\right)\)
\(=2x\left(x-2\right)\)
hk tốt
^^
MÀY
vào câu hỏi tương tự .
Ok?