\(e,x^6-x^4+2x^3+2x^2\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 9 2018

e ) \(x^6-x^4+2x^3+2x^2\)

\(=x^4\left(x^2-1\right)+2x^2\left(x+1\right)\)

\(=x^4\left(x-1\right)\left(x+1\right)+2x^2\left(x+1\right)\)

\(=\left(x^5-x^4\right)\left(x+1\right)+2x^2\left(x+1\right)\)

\(=\left(x+1\right)\left(x^5-x^4+2x^2\right)\)

\(=x^2\left(x+1\right)\left(x^3-x^2+2\right)\)

f ) \(x^2-7x+12\)

\(=x^2-4x-3x+12\)

\(=x\left(x-4\right)-3\left(x-4\right)\)

\(=\left(x-3\right)\left(x-4\right)\)

29 tháng 9 2018

1 ) \(x^6-x^4+2x^3+2x^2\)

= x2 ( x4 - x2 + 2x + 2 )

\(x^2\left[x^4+2x^3+x^2-2x^3-4x^2-2x+2x^2+4x+2\right]\)

\(x^2\left[x^2\left(x^2+2x+1\right)-2x\left(x^2+2x+1\right)+2\left(x^2+2x+1\right)\right]\)

\(x^2\left(x^2+2x+1\right)\left(x^2-2x+2\right)\)

\(x^2\left(x+1\right)^2\left(x^2-2x+2\right)\)

29 tháng 9 2018

\(e,x^6-x^4+2x^3+2x^2\)

\(=x^4\left(x^2-1\right)+2x^2\left(x+1\right)\)

\(=x^4\left(x-1\right)\left(x+1\right)+2x^2\left(x+1\right)\)

\(=x^2\left(x+1\right)\left[x^2\left(x-1\right)+2x^2\right]\)

\(=x^2\left(x+1\right)\left(x^3-x^2+2x^2\right)\)

\(=x^2\left(x+1\right)\left(x^3+x^2\right)\)

\(=x^4\left(x+1\right)^2\)

\(f,x^2-7x+12\)

\(=x^2-3x-4x+12\)

\(=x\left(x-3\right)-4\left(x-3\right)\)

\(=\left(x-4\right)\left(x-3\right)\)

4 tháng 10 2019

a, x3 - 19x - 30

= x3 - 5x2 + 5x2 - 25x + 6x + 30

= (x2 + 5x + 6)(x - 5)

= (x + 3)(x + 2)(x - 5)

d, x4 - 2x2 - 24

= x4 - 6x2 + 6x2 - 24

= (x2 - 6)(x + 4)

26 tháng 7 2018

\(e,x^2-y^2+2x+1=\left(x^2+2x+1\right)-y^2\)

\(=\left(x+1\right)^2-y^2=\left(x+1-y\right)\left(x+1+y\right)\)

\(f,x^3+2x^2+2x+1=\left(x^3+1\right)+\left(2x^2+2x\right)\)

\(=\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-x+1+2x\right)\)

\(=\left(x+1\right)\left(x^2+x+1\right)\)

30 tháng 9 2018

\(x^2-y^2+2x+1\)

\(=\left(x^2+2x+1\right)-y^2\)

\(=\left(x+1\right)^2-y^2\)

\(=\left(x-y+1\right)\left(x+y+1\right)\)

hk tốt

^^

1 tháng 8 2018

x2+y2-x2y2+xy-x-y=x2-x2y2+y2-y-x+xy

                            =x(1-y2)+y(y-1)-x(1-y)

                            =x2(y-1)(y+1)+y(y-1)+x(y-1)

                           =-x2(y-1)(y+1)+y(y-1)+x(y-1)

                           =(y-1)(-x2(y+1)+y+x)

1 tháng 8 2018

f)    x4+2x2-4x-4=(x3.x+x3.2)-(2x.2+2.2)

                          =x3(x+2)-2(x+2)

                            =(x3-2)(x+2)

8 tháng 7 2016

b, \(\left(x^2+x\right)^2+4x^2+4x-12=x^4+2x^3+x^2+4x^2+4x-12\)

                                                         \(=x^4+2x^3+5x^2+4x-12\)

                                                         \(=\left(x^4-x^3\right)+\left(3x^3-3x^2\right)+\left(8x^2-8x\right)+\left(12x-12\right)\)

                                                         \(=x^3\left(x-1\right)+3x^2\left(x-1\right)+8x\left(x-1\right)+12\left(x-1\right)\)

                                                          \(=\left(x^3+3x^2+8x+12\right)\left(x-1\right)\)

                                                          \(=\left[\left(x^3+2x^2\right)+\left(x^2+2x\right)+\left(6x+12\right)\right]\left(x-1\right)\)

                                                           \(=\left[x^2\left(x+2\right)+x\left(x+2\right)+6\left(x+2\right)\right]\left(x-1\right)\)

                                                            \(=\left(x^2+x+6\right)\left(x+2\right)\left(x-1\right)\)

c,        \(x^3+3x^2-4=\left(x^3+2x^2\right)+\left(x^2+2x\right)-\left(2x+4\right)\)

                                    \(=x^2\left(x+2\right)+x\left(x+2\right)-2\left(x+2\right)\)

                                     = \(\left(x^2+x-2\right)\left(x+2\right)\)

9 tháng 7 2016

a)\(x^5+x^4+1=x^5-\left(-x^3+x^3\right)+x^4+\left(x^2-x^2\right)+\left(x-x\right)+1\)

\(=x^5-x^3+x^2+x^4-x^2+x+x^3-x+1\)

\(=x^2\left(x^3-x+1\right)+x\left(x^3-x+1\right)+\left(x^3-x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^3-x+1\right)\)

b,c có ng lm rồi

d)\(2x^4-3x^3-7x^2+6x+8\)

Ta thấy x=-1 là nghiệm của đa thức 

=>đa thức có 1 hạng tử là x+1

\(\Rightarrow\left(x+1\right)\left(2x^3-5x^2-2x+8\right)\)

\(\Rightarrow\left(x+1\right)\left[2x^3-x^2-4x-4x^2+2x+8\right]\)

\(\Rightarrow\left(x+1\right)\left[x\left(2x^2-x-4\right)-2\left(2x^2-x-4\right)\right]\)

\(\Rightarrow\left(x+1\right)\left(x-2\right)\left(2x^2-x-4\right)\)

phần còn lại bạn tự lo nhé

26 tháng 9 2018

      \(x^3-x^2-14x+24\)

\(=x^3-2x^2+x^2-2x-12x+24\)

\(=x^2\left(x-2\right)+x\left(x-2\right)-12\left(x-2\right)\)

\(=\left(x-2\right)\left(x^2+x-12\right)\)

\(=\left(x-2\right).\left[x^2+4x-3x-12\right]\)

\(=\left(x-2\right).\left[x\left(x+4\right)-3\left(x+4\right)\right]\)

\(=\left(x-2\right)\left(x+4\right)\left(x-3\right)\)

      \(x^4+x^3+2x-4\)

\(=x^4-x^3+2x^3-2x^2+2x^2-2x+4x-4\)

\(=x^3\left(x-1\right)+2x^2\left(x-1\right)+2x\left(x-1\right)+4\left(x-1\right)\)

\(=\left(x-1\right)\left(x^3+2x^2+2x+4\right)\)

\(=\left(x-1\right).\left[x^2\left(x+2\right)+2\left(x+2\right)\right]\)

\(=\left(x-1\right)\left(x+2\right)\left(x^2+2\right)\)

      \(8x^4-2x^3-3x^2-2x-1\)

\(=8x^4-8x^3+6x^3-6x^2+3x^2-3x+x-1\)

\(=8x^3\left(x-1\right)+6x^2\left(x-1\right)+3x\left(x-1\right)+x-1\)

\(=\left(x-1\right)\left(8x^3+6x^2+3x+1\right)\)

\(=\left(x-1\right)\left[\left(8x^3+1\right)+\left(6x^2+3x\right)\right]\)

\(=\left(x-1\right)\left[\left(2x+1\right)\left(4x^2-2x+1\right)+3x\left(2x+1\right)\right]\)

\(=\left(x-1\right)\left(2x+1\right)\left(4x^2+x+1\right)\)

      \(3x^2-7x+2\)

\(=3x^2-6x-x+2\)

\(=3x\left(x-2\right)-\left(x-2\right)\)

\(=\left(x-2\right)\left(3x-1\right)\)

Chúc bạn học tốt.

1 tháng 10 2016

b)x3-7x+6=x3-x-6x+6=x(x2-1)-6(x-1)=x(x-1)(x+1)-6(x-1)

=(x-1)[x(x+1)-6]=(x-1)(x2+x-6)=(x-1)(x2+3x-2x-6)=(x-1)[x(x+3)-2(x+3)]=(x-1)(x-2)(x+3)

c)x3-x2-x-2

=x3-2x2+x2-2x+x-2

=x2(x-2)+x(x-2)+(x-2)

=(x-2)(x2+x+1)

3 tháng 9 2018

\(x^3-7x+6\)

\(=x^3-x^2+x^2-x-6x+6\)

\(=x^2\left(x-1\right)+x\left(x-1\right)-6\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2+x-6\right)\)

\(=\left(x-1\right)\left(x-2\right)\left(x+3\right)\)

3 tháng 8 2020

a. \(x^2-2x-3=x^2+x-3x-3=x\left(x+1\right)-3\left(x+1\right)=\left(x-3\right)\left(x+1\right)\)

b. \(x^2-4xy+3y^2=x^2-xy-3xy+3y^2=x\left(x-y\right)-3y\left(x-y\right)=\left(x-3y\right)\left(x-y\right)\)

c.  \(x^2-5x-24=\left(x-8\right)\left(x+3\right)\)

3 tháng 8 2020

e. \(2x^4+7x^2+3\)

\(=2x^4+x^2+6x^2+3\)

\(=x^2\left(2x^2+1\right)+3\left(2x^2+1\right)\)

\(=\left(x^2+3\right)\left(2x^2+1\right)\)

29 tháng 6 2018

\(1\hept{\begin{cases}6x^2-8x+3x-4\\2x\left(3x-4\right)+\left(3x-4\right)\\\left(3x-4\right)\left(2x+1\right)\end{cases}}\)

\(2\hept{\begin{cases}7x^2-7xy-5x+5y+6xy\\7x\left(x-y\right)-5\left(x-y\right)+\frac{6xy\left(x-y\right)}{\left(x-y\right)}\\\left(x-y\right)\left(7x-5+\frac{6xy}{\left(x-y\right)}\right)\end{cases}}\)

\(3\hept{\begin{cases}5x\left(x-y\right)-15\left(x-y\right)\\\left(x-y\right)\left(5x-15\right)\end{cases}}\)

\(4,,2x^2+x=x\left(2x+1\right)\)

\(5\hept{\begin{cases}x^3-4x-3x^2+12\\x\left(x^2-4\right)-3\left(x^2-4\right)\\\left(x+2\right)\left(x-2\right)\left(x-3\right)\end{cases}}\)

\(6\hept{\begin{cases}2x+2y+x^2-y^2\\2\left(x+y\right)+\left(x+y\right)\left(x-y\right)\\\left(x+y\right)\left(2+x-y\right)\end{cases}}\)

\(7\hept{\begin{cases}\left(x^2y-2xy\right)-\left(xy-2y\right)+\left(xy-y\right)\\xy\left(x-2\right)-y\left(x-2\right)+y\left(x-1\right)\\y\left(X-2\right)\left(x-1\right)+y\left(x-1\right)\end{cases}}\Leftrightarrow y\left(x-1\right)\left(x-2+1\right)\)

\(8\hept{\begin{cases}x\left(2-y\right)+z\left(2-y\right)\\\left(2-y\right)\left(x+1\right)\end{cases}}\)

16 tháng 9 2018

\(2x^2+x\)

\(=x\left(2x+1\right)\)

.

hk 

tốt