Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x8 + x + 1 = (x^2+x+1)*(x^6-x^5+x^3-x^2+1)
b) x^8 + 3x^4 + 4 = (x^4-x^2+2)*(x^4+x^2+2)
\(x^8+3x^4+4\)
\(=\left(x^8-x^6+2x^4\right)+\left(x^6-x^4+2x^2\right)+\left(2x^4-2x^2+4\right)\)
\(=x^4\left(x^4-x^2+2\right)+x^2\left(x^4-x^2+2\right)+2\left(x^4-x^2+2\right)\)
\(=\left(x^4+x^2+2\right)\left(x^4-x^2+2\right)\)
\(4x^4+4x^3+5x^2+2x+1\)
\(=\left(4x^4+2x^3+2x^2\right)+\left(2x^3+x^2+x\right)+\left(2x^2+x+1\right)\)
\(=2x^2\left(2x^2+x+1\right)+x\left(2x^2+x+1\right)+\left(2x^2+x+1\right)\)
\(=\left(2x^2+x+1\right)^2\)
\(x^4+3x^2y^2+4y^4\)
\(x^4+4y^4-2xy^3+2xy^3+2x^2y^2+2x^2y^2-x^2y^2\)
\(+x^3y-x^3y\)
\(=\left(4y^4-2xy^3+2x^2y^2\right)+\left(2xy^3-x^2y^2+x^3y\right)\)
\(+\left(2x^2y^2-x^3y+x^4\right)\)
\(=2y^2\left(2y^2-xy+x^2\right)+xy\left(2y^2-xy+x^2\right)\)
\(+x^2\left(2y^2-xy+x^2\right)\)
\(=\left(2y^2+xy+x^2\right)\left(2y^2-xy+x^2\right)\)
a/ \(x^{12}-3x^6+1\)
= \(\left(x^6\right)^2-2x^6+1-x^6\)
= \(\left(x^6-1\right)^2-\left(x^3\right)^2\)
= \(\left(x^6-x^3-1\right)\left(x^6+x^3-1\right)\)
b/ \(x^8-3x^4+1\)
= \(\left(x^4\right)^2-2x^4+1-x^4\)
= \(\left(x^4-1\right)^2-\left(x^2\right)^2\)
= \(\left(x^4-x^2-1\right)\left(x^4+x^2-1\right)\)
a) ta có : x^2 -x-12 =( x^2 -4x) +(3x-12)=x(x-4) + 3(x-4) =(x+3)(x-4)
b)ta có: x^8 +3x^4 -4= x^4(x^4 +4) - (x^4 +4) =( x^4 -1)(x^4 +4) =(x^2 -1)(x^2 +1)(x^4 +4)
\(x^4+3x^2+36\)
\(=\left(x^2\right)^2+2.x^2.6+6^2-9x^2\)
\(=\left(x^2+6\right)^2-\left(3x\right)^2=\left(x^2-3x+6\right)\left(x^2+3x+6\right)\)
\(2x^4-3x^3-7x^2+6x+8\)
\(=2x^4+2x^3-5x^3-5x^2-2x^2-2x+8x+8\)
\(=2x^3\left(x+1\right)-5x^2\left(x+1\right)-2x\left(x+1\right)+8\left(x+1\right)\)
\(=\left(x+1\right)\left(2x^3-5x^2-2x+8\right)\)
\(=\left(x+1\right)\left[2x^2\left(x-2\right)-x\left(x-2\right)-4\left(x-2\right)\right]\)
\(=\left(x+1\right)\left(x-2\right)\left(2x^2-x-4\right)\)
Chúc bạn học tốt.
\(x^8+3x^4+4\)
\(=x^8+4x^4+4-x^4\)
\(=\left(x^4+2\right)^2-\left(x^2\right)^2\)
\(=\left(x^4+2-x^2\right)\left(x^4+2+x^2\right)\)
\(3x^2+22xy+11x+37y+7y^2+10\)
\(=\left(3x^2+6x+21xy\right)+\left(7y^2+xy+2y\right)+\left(5x+35y+10\right)\)
\(=3x\left(x+7y+2\right)+y\left(x+7y+2\right)+5\left(x+7y+2\right)\)
\(=\left(3x+y+5\right)\left(x+7y+2\right)\)
x8+3x4+4
= x8+4x4+4-x4
= (x4+2)2-(x2)2
= (x4+2-x2).(x4+2+x2)
\(x^8+3x^4+4=(x^8+3x^4)+4=x^4(x^2+3)+4=(x^2+3)(x^4+4)\)