\(8\cdot\left(x+y+z\right)^3-\left(x+y\right)^3-\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2017

ucchengaingungnhonhung

4 tháng 10 2017

c)(x2+x)2-2(x2+x)-15

đặt x2+x=a ta có

a2-2a-15

=a2+3a-5a-15

=(a2+3a)-(5a+15)

=a(a+3)-5(a+3)

=(a+3)(a-5)

thay a=x2+x

(x2+x+3)(x2+x-5)

20 tháng 11 2016

chịu

1 tháng 10 2016

\(9\left(x-y\right)^2-4\left(x+y\right)^2=\left[3\left(x-y\right)-2\left(x+y\right)\right]\left[3\left(x-y\right)+2\left(x+y\right)\right]\)

\(=\left(3x-3y-2x-2y\right)\left(3x-3y+2x+2y\right)\)

\(=\left(x-5y\right)\left(5x-y\right)\)

8 tháng 11 2017

a)Ta có : \(\dfrac{x+1}{1-x}\)( giữ nguyên )

\(\dfrac{x^2-2}{1-x}\)( giữ nguyên )

\(\dfrac{2x^2-x}{x-1}=\dfrac{x-2x^2}{1-x}\)

b)Ta có : \(\dfrac{1}{x-1}=\dfrac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x^2+x+1}{x^3-1}\)

\(\dfrac{2x}{x^2+x+1}=\dfrac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{2x^2-2x}{x^3-1}\)

\(\dfrac{2x-3x^2}{x^3-1}\)(giữ nguyên )

c) MTC = ( x+ 2)2(x - 2)2

Do đó , ta có : \(\dfrac{1}{x^2+4x+4}=\dfrac{1}{\left(x+2\right)^2}=\dfrac{\left(x-2\right)^2}{\left(x+2\right)^2\left(x-2\right)^2}\)

\(\dfrac{1}{x^2-4x+4}=\dfrac{1}{\left(x-2\right)^2}=\dfrac{\left(x+2\right)^2}{\left(x-2\right)^2\left(x+2\right)^2}\)

\(\dfrac{x}{x^2-4}=\dfrac{x}{\left(x+2\right)\left(x-2\right)}=\dfrac{x\left(x^2-2^2\right)}{\left(x+2\right)^2\left(x-2\right)^2}=\dfrac{x^3-4x}{\left(x+2\right)^2\left(x-2\right)^2}\)

8 tháng 11 2017

d) MTC = xyz( x - y)( y - z)( x - z)

Do đó , ta có : \(\dfrac{1}{x\left(x-y\right)\left(x-z\right)}=\dfrac{yz\left(y-z\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

\(\dfrac{1}{y\left(y-x\right)\left(y-z\right)}=\dfrac{-xz\left(x-z\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

\(\dfrac{1}{z\left(z-x\right)\left(z-y\right)}=\dfrac{xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

Cộng các phân thức lại ta có :

\(\dfrac{yz\left(y-z\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)+\(\dfrac{-xz\left(x-z\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)+\(\dfrac{xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

= \(\dfrac{yz\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

\(S=\dfrac{\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc}{2a^2+2b^2+2c^2-2ab-2bc-2ac}\)

\(=\dfrac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)}{2a^2+2b^2+2c^2-2ab-2bc-2ac}\)

\(=\dfrac{3\cdot\left(2a^2+2b^2+2c^2-2ab-2bc-2ac\right)\cdot\dfrac{1}{2}}{2a^2+2b^2+2c^2-2ab-2bc-2ac}=\dfrac{3}{2}\)

20 tháng 4 2017

x=2007,5

27 tháng 7 2017

\(a,\left(x+1\right)^2-\left(x-1\right)^2-3\left(x+1\right)\left(x-1\right)\)

\(=x^2+2x+1-\left(x^2-2x+1\right)-3\left(x^2-1\right)\)

\(=x^2+2x+1-x^2+2x-1-3x^2+2=-3x^2+4x+2\)\(b,5\left(x+2\right)\left(x-2\right)-\left(2x-3\right)^2-x^2+17\)

\(=5\left(x^2-4\right)-\left(4x^2-12x+9\right)-x^2+17\)

\(=5x^2-20-4x^2+12x-9-x^2+17=12x-12\)

12 tháng 9 2016

A = x2 + 3x + 7

= x2 + 2 . x . 3/2 + 9/4 + 19/4

= (x + 3/2)2 + 19/4

(x + 3/2)2 lớn hơn hoặc bằng 0

(x + 3/2)2 + 19/4 lớn hơn hoặc bằng 19/4

Vậy Min A = 19/4 khi x = - /32

***

B = x(x - 6)

= x2 - 6x

= x2 - 2 . x . 3 + 9 - 9

= (x - 3)2 - 9

(x - 3)2 lớn hơn hoặc bằng 0

(x - 3)2 - 9 lớn hơn hoặc bằng - 9

Vậy Min B = - 9 khi x = 3

***

C = (x - 2)(x - 5)(x 2 - 7x - 10)

= (x2 -  7x + 10)(x2 - 7x - 10)

= (x2 - 7x)2 - 100

(x2 - 7x)2 lớn hơn hoặc bằng 0

(x2 - 7x)2 - 100 lớn hơn hoặc bằng - 100

Vậy Min C = - 100 khi x = 7

12 tháng 9 2016

A = 11 - 10x - x2

= - (x2 + 2 . x . 5 + 25 - 36)

= -[(x + 5)2 - 36]

(x + 5)2 lớn hơn hoặc bằng 0

(x + 5)2 - 36 lớn hơn hoặc bằng - 36

- [(x + 5)2 - 36] nhỏ hơn hoặc bằng 36

Vậy Max A = 36 khi x= - 5

B = |x - 4|(2 - |x - 4|)

Đặt |x - 4| = t, ta có:

B = t(2 - t)

= - (t2 - 2 . t . 1 + 1 - 1)

= - [(t - 1)2 - 1]

= - [(|x - 4| - 1)2 - 1]

(|x - 4| - 1)2 lớn hơn hoặc bằng 0

(|x - 4| - 1)2 - 1 lớn hơn hoặc bằng - 1

[(|x - 4| - 1)2 - 1] nhỏ hơn hoặc bằng 1

Vậy Max B = 1 khi x = 5 hoặc x = 3