Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^2-xy+4x-2y+4\)
\(=\left(x^2+4x+4\right)-\left(xy+2y\right)\\ =\left(x+2\right)^2-y.\left(x+2\right)\)
\(=\left(x+2\right).\left(x+2-y\right)\)
b) \(2x^2-5x-3\)
\(=2x^2+x-6x-3\)
\(=\left(2x^2+x\right)-\left(6x+3\right)=x\left(2x+1\right)-3\left(2x+1\right)\)
\(=\left(2x+1\right).\left(x-3\right)\)
c)\(\)
c);d);e) tạm thời tớ chưa nghĩ ra-.-"
tham khả tạm 2 câu ạ, chúc học tốt'.'
Bạn viết sai đề rồi. Mình sửa lại nhé.
\(x^3-5x^2+2x+8\)
\(=x^3-2x^2-3x^2+6x-4x+8\)
\(=x^2\left(x-2\right)-3x\left(x-2\right)-4\left(x-2\right)\)
\(=\left(x^2-3x-4\right)\left(x-2\right)\)
\(=\left[\left(x^2-4x\right)+\left(x-4\right)\right]\left(x-2\right)\)
\(=\left[x\left(x-4\right)+\left(x-4\right)\right]\left(x-2\right)\)
\(=\left(x+1\right)\left(x-4\right)\left(x-2\right)\)
Chúc bạn học tốt.
a) \(x^2+4x+3\)
\(=x^2+3x+x+3\)
\(=x\left(x+3\right)+\left(x+3\right)\)
\(=\left(x+1\right)\left(x+3\right)\)
2x( x - 1 ) - x( 1 - x )2 - ( 1 - x )3
= 2x( x - 1 ) - x( x - 1 )2 + ( x - 1 )3
= ( x - 1 )[ 2x - x( x - 1 ) + ( x - 1 )2 ]
= ( x - 1 )( 2x - x2 + x + x2 - 2x + 1 )
= ( x - 1 )( x + 1 )
Ta có: \(2x\left(x-1\right)-x\left(1-x\right)^2-\left(1-x\right)^3\)
\(=\left(x-1\right)\left(2x-x^2+x+x^2-2x+1\right)\)
\(=\left(x-1\right)\left(x+1\right)\)
a) x3+y3+z3-3xyz
=(x+y)3+z3-3x2y-3xy2-3xyz
=(x+y+z).[(x+y)2+(x+y).z+z2]-3xy.(x+y+z)
=(x+y+z)(x2+2xy+y2+zx+zy+z2)-3xy.(x+y+z)
=(x+y+z)(x2+2xy+y2+zx+zy+z2-3xy)
=(x+y+z)(x2+y2+zx+zy+z2-zy)
b)a2(b-c)+b2(c-a)+c2(a-b)
=a2b-a2c+b2c-b2a+c2a-c2b
=(a2b-c2b)+(-a2c+c2a)+(b2c-b2a)
=b.(a2-c2)-ac.(a-c)-b2.(a-c)
=b.(a+c)(a-c)-ac.(a-c)-b2.(a-c)
=(a-c)[b.(a+c)-ac-b2]
=(a-c)(ab+bc-ac-b2)
=(a-c)[(ab-ac)+(bc-b2)]
=(a-c)[a.(b-c)-b.(b-c)]
=(a-c)(b-c)(a-b)
a) 7x+7y=7(x+y)
b) 2x2y-6xy2=2xy(x-3y)
c)3x(x-1)+7x2(x-1)=x(x-1)(3+7x)
d)3x(x-4)+5x2(4-x)=(x-4)(3x-5x2)
=x(x-4)(3-5x)
e)6x4-9x3=3x3(2x-3)
f)5y8-15y6=5y6(y2-3)
a) \(x^5+x+1\)
\(=\left(x^5+x^4+x^3\right)-\left(x^4+x^3+x^2\right)+\left(x^2+x+1\right)\)
\(=x^3\left(x^2+x+1\right)-x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^3-x^2+1\right)\left(x^2+x+1\right)\)
b) \(6x^2-13x+6\)
\(=\left(6x^2-9x\right)-\left(4x-6\right)\)
\(=3x\left(2x-3\right)-2\left(2x-3\right)\)
\(=\left(2x-3\right)\left(3x-2\right)\)
Mình nhanh cành tốt càng tốt! Mình cần gấp nha !
THẾ NÀY MỚI ĐÚNG !
Sửa đề\(\left(x^2+y^2\right)^3+\left(z^2-x^2\right)^3-\left(y^2+z^2\right)^3\)
\(=\left(x^2+y^2\right)^3+\left(z^2-x^2\right)^3+\left(-y^2-z^2\right)^3\)
Đặt \(\hept{\begin{cases}x^2+y^2=a\\z^2-x^2=b\\-y^2-z^2=c\end{cases}}\)
Nhận thấy \(a+b+c=x^2+y^2+z^2-x^2-y^2-z^2=0\)
Mà \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)( bạn tự chứng minh cái này nha )
\(\Rightarrow a^3+b^3+c^3-3abc=0\)
\(\Rightarrow a^3+b^3+c^3=3abc\)
Thay \(\hept{\begin{cases}a=x^2+y^2\\b=z^2-x^2\\c=-y^2-z^2\end{cases}}\) vào (1) ta được :
\(\left(x^2+y^2\right)^3+\left(z^2-x^2\right)^3+\left(-y^2-z^2\right)^3=3\left(x^2+y^2\right)\left(z^2-x^2\right)\left(-y^2-z^2\right)\)
45 + x3 - 5x2 - 9x
= (x3 - 5x2) - (9x - 45)
= x2(x - 5) - 9(x - 5)
= (x - 5)(x2 - 9)
= (x - 5)(x - 3)(x + 3)
TL:
\(45+x^3-5x^2-9x\)
\(=x^2\left(x-5\right)-9\left(x-5\right)\)
\(=\left(x+3\right)\left(x-3\right)\left(x-5\right)\)