K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có : \(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)

Nên đa thức trên ko có nghiệm 

Suy ra ko phân tích đc thành nhân tử 

3 tháng 6 2018

Không phải đâu nhé! Các đa thức không có nghiệm vẫn có thể phân tích bằng phương pháp hệ số bất định được mà!

31 tháng 8 2021

Là nhân tử rồi bn ơi

30 tháng 11 2019

x2 - x = x.x - x.1 = x(x - 1)

9 tháng 10 2017

x2 – x – 6

= x2 + 2x – 3x – 6

(Tách –x = 2x – 3x)

= x(x + 2) – 3(x + 2)

(có x + 2 là nhân tử chung)

= (x – 3)(x + 2)

26 tháng 7 2017

Cách 1: Nhóm hai hạng tử thứ 1 và thứ 2, hạng tử thứ 3 và thứ 4

x2 – xy + x – y

= (x2 – xy) + (x – y)

(Nhóm thứ nhất có nhân tử chung là x)

= x(x – y) + (x – y)

(Xuất hiện nhân tử chung x – y)

= (x + 1)(x – y)

Cách 2: Nhóm hạng tử thứ 1 và thứ 3 ; hạng tử thứ 2 và thứ 4

x2 – xy + x – y

= (x2 + x) – (xy + y)

(nhóm thứ nhất có nhân tử chung là x ; nhóm thứ hai có nhân tử chung là y)

= x.(x + 1) – y.(x + 1)

(Xuất hiện nhân tử chung x + 1)

= (x – y)(x + 1)

6 tháng 3 2018

Cách 1: x2 – 4 + (x – 2)2

(Xuất hiện hằng đẳng thức (3))

= (x2– 22) + (x – 2)2

= (x – 2)(x + 2) + (x – 2)2

(Có nhân tử chung x – 2)

= (x – 2)[(x + 2) + (x – 2)]

= (x – 2)(x + 2 + x – 2)

= (x – 2)(2x)

= 2x(x – 2)

Cách 2: x2 – 4 + (x – 2)2

(Khai triển hằng đẳng thức (2))

= x2 – 4 + (x2 – 2.x.2 + 22)

= x2 – 4 + x2 – 4x + 4

= 2x2 – 4x

(Có nhân tử chung là 2x)

= 2x(x – 2)

21 tháng 8 2021

\(\left(x^2+x+1\right)\left(x^2+x+5\right)-21=x^4+x^3+5x^2+x^3+x^2+5x+x^2+x+5-21=x^4+2x^3+7x^2+6x-16=\left(x-1\right)\left(x+2\right)\left(x^2+x+8\right)\)

NV
21 tháng 8 2021

\(=\left(x^2+x+1\right)\left(x^2+x+1+4\right)-21\)

\(=\left(x^2+x+1\right)^2+4\left(x^2+x+1\right)-21\)

\(=\left(x^2+x+1\right)^2-3\left(x^2+x+1\right)+7\left(x^2+x+1\right)-21\)

\(=\left(x^2+x+1\right)\left(x^2+x-2\right)+7\left(x^2+x-2\right)\)

\(=\left(x^2+x-2\right)\left(x^2+x+8\right)\)

\(=\left(x-1\right)\left(x-2\right)\left(x^2+x+8\right)\)

31 tháng 7 2017

AH
Akai Haruma
Giáo viên
29 tháng 12 2023

Lời giải:
$\frac{x}{y}$ không phải đơn thức bạn nhé.

a. $x^2-2x+1=(x-1)^2$

b. $x^2+2xy-25+y^2=(x^2+2xy+y^2)-25=(x+y)^2-5^2=(x+y-5)(x+y+5)$

c. $5x^2-10xy=5x(x-2y)$

d. $x^2-y^2+x-y=(x^2-y^2)+(x-y)=(x-y)(x+y)+(x-y)$

$=(x-y)(x+y+1)$

2 tháng 3 2022

-Đặt \(t=\left(x^2-x+1\right)\)

\(\left(x^2-x+1\right)^2-5x\left(x^2-x+1\right)+4x^2\)

\(=t^2-5xt+4x^2\)

\(=t^2-4xt-xt+4x^2\)

\(=t\left(t-4x\right)-x\left(t-4x\right)\)

\(=\left(t-4x\right)\left(t-x\right)\)

\(=\left(x^2-x+1-4x\right)\left(x^2-x+1-x\right)\)

\(=\left(x^2-5x+1\right)\left(x^2-2x +1\right)\)

\(=\left(x^2-5x+1\right)\left(x-1\right)^2\)

2 tháng 3 2022

CAM ON - HOANG