K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2018

\(P = 2a^3 + 7a^2b + 7ab^2 + 2b^3\)

\(=2a^3+2a^2b+5a^2b+5ab^2+2ab^2+2b^3\)

\(=2a^2(a+b)+5ab(a+b)+2b^2(a+b) \)

\(=(2a^2+5ab+2b^2)(a+b)\)

\(=(2a^2+4ab+ab+2b^2)(a+b)\)

\(=[2a(a+2b)+b(a+2b)](a+b)\)

\(=(2a+b)(2b+a)(a+b)\)

5 tháng 10 2018

P=2a3+7a2b+7ab2+2b3

=2a3+2a2b+5a2b+5ab2+2ab2+2b2

=(2a3+2a2b)+(5a2b+5ab2)+(2ab2+2b3)

=2a2(a+b)+5ab(a+b)+2b2(a+b)

=(a+b)(2a2+5ab+2b2)

=(a+b)[2a2+4ab+ab+2b2]

=(a+b)[2a(a+2b)+b(a+2b)]

=(a+b)(2a+b)(a+2b)

15 tháng 6 2015

= 2( a^3 + b^3 ) + 7ab(a+b) = 2(a+b)(a^2 -ab +b^2)  + 7ab(a+b)  = (a+b) ( 2a^2 - 2ab + 2b^2 - 7ab)

=(a +b ) ( 2a^2 +2b^2 - 9ab)

15 tháng 6 2015

saj ruj thang Tran saj

10 tháng 4 2018

à. so easy

10 tháng 4 2018

\(P=2a^3+7a^2b+7ab^2+2b^3\)

\(P=2a^3+2a^2b+5a^2b+5ab^2+2ab^2+2b^3\)

\(P=\left(2a^3+2a^2b\right)+\left(5a^2b+5ab^2\right)+\left(2ab^2+2b^3\right)\)

\(P=2a^2\left(a+b\right)+5ab\left(a+b\right)+2b^2\left(a+b\right)\)

\(P=\left(a+b\right)\left(2a^2+5ab+2b^2\right)\)

\(P=\left(a+b\right)\left[2a^2+4ab+ab+2b^2\right]\)

\(P=\left(a+b\right)\left[2a\left(a+2b\right)+b\left(a+2b\right)\right]\)

\(P=\left(a+b\right)\left(2a+b\right)\left(a+2b\right)\)

2 tháng 7 2017

a(a+2b)3 -b(2a+b)3

\(=a\left(a^3+6a^2b+12ab^2+8b^3\right)-b\left(8a^3+12a^2b+6ab^2+b^3\right)\)

\(=a^4+6a^3b+12a^2b^2+8ab^3-8a^3b-12a^2b^2-6ab^3-b^4\)

\(=a^4-2a^3b+2ab^3-b^4\)

\(=\left[\left(a^2\right)^2+ \left(b^2\right)^2\right]-2ab\left(a^2-b^2\right)\)

\(=\left(a^2+b^2\right)\left(a^2-b^2\right)-2ab\left(a^2-b^2\right)\)

\(=\left(a^2-b^2\right)\left(a^2-2ab+b^2\right)\)

\(=\left(a-b\right)\left(a+b\right)\left(a-b\right)^2\)

\(=\left(a-b\right)^3\left(a+b\right)\)

\(a.\left(a+2b\right)^3-b.\left(2a+b\right)^3\)

\(=a.\left(a+20+b\right)^3-b.\left(20+a+b\right)^3\)

\(=\left(a-b\right).\left(a+20+b\right)^3\)

Thế này có phải là phân tích đa thức thành nhân tử k ạ

Chúc bạn học tốt

1 tháng 7 2020

\(a\left(a+2b\right)^3-b\left(2a+b\right)^3\)

\(=\left(a^4+6a^3b+12a^2b^2+8ab^3\right)-\left(b^4+8a^3b+12a^2b^2+6ab^3\right)\)

\(=a^4-b^4-2a^3b+2ab^3\)

\(=\left(a^2-b^2\right)\left(a^2+b^2\right)-2ab\left(a^2-b^2\right)\)

\(=\left(a^2-b^2\right)\left(a^2-2ab+b^2\right)\)

\(=\left(a-b\right)^3\left(a+b\right)\)

OK ?

24 tháng 8 2016

2a2b2+2a2c2+2b2c2-a4-b4-c4

=4a2b2-(a4+2a2b2+b4)+(2b2c2+2a2c2)-c4

=2(ab)2-(a+b)2+2c2(a2+b2)+c4

=2(ab)2-[(a+b)2-2c2(a2+b2)+c4]

=2(ab)2-(b2+a2-c2)2

=[(a+b)2-c2][-(a-b)2+c2]

=(a+b-c)(a+b+c)(c-a+b)(a+c-b)

 

25 tháng 8 2016

\(2a^2b^2+2a^2c^2+2b^2c^2-a^4-b^4-c^4\)

\(=4a^2b^2-\left(a^4+2a^2b^2+b^4\right)+\left(2b^2c^2+2a^2c^2\right)-c^4\)

\(=2\left(ab\right)^2-\left(a+b\right)^2+2c^2\left(a^2+b^2\right)+c^4\)

\(=2\left(ab\right)^2-\left[\left(a+b\right)^2-2c^2\left(a^2+b^2\right)+c^4\right]\\ =2\left(ab\right)^2-\left(b^2+a^2-c^2\right)^2\)

=\(\left[\left(a+b\right)^2-c^2\right]\left[-\left(a-b\right)^2+c^2\right]\\ =\left(a+b+c\right)\left(a+b+c\right)\left(c-a+b\right)\left(a+c-b\right)\)

28 tháng 10 2020

a2 + b2 + 2ab + 2a + 2b + 1

= ( a2 + 2ab + b2 ) + ( 2a + 2b ) + 1

= ( a + b )2 + 2( a + b ) + 12

= ( a + b + 1 )2

3x( x - 2y ) - 6y( 2y - x )

= 3x( x - 2y ) + 6y( x - 2y )

= 3( x - 2y )( x + 2y )

x2 + 2x - 3

= x2 - x + 3x - 3

= x( x - 1 ) + 3( x - 1 )

= ( x - 1 )( x + 3 )

28 tháng 10 2020

a) \(a^2+b^2+2ab+2a+2b+1\)

\(=\left(a^2+2ab+b^2\right)+\left(2a+2b\right)+1\)

\(=\left(a+b\right)^2+2\left(a+b\right)+1\)

\(=\left(a+b+1\right)^2\)

b) \(3x\left(x-2y\right)-6y\left(2y-x\right)\)

\(=3x\left(x-2y\right)+6y\left(x-2y\right)\)

\(=3\left(x-2y\right)\left(x+2y\right)\)

c) \(x^2+2x-3=x^2-x+3x-3\)

\(=\left(x^2-x\right)+\left(3x-3\right)\)

\(=x\left(x-1\right)+3\left(x-1\right)\)

\(=\left(x-1\right)\left(x+3\right)\)

11 tháng 2 2019

= (2a-b+1)(a+2b-3)

12 tháng 8 2018

Đặt \(a+b-2c=x,b+c-2a=y,c+a-2b=z\)

\(\Rightarrow x+y+z=0\)

Chắc bạn biết: \(x+y+z=0\Rightarrow x^3+y^3+z^3=3xyz\)

Vậy \(\left(a+b-2c\right)^3+\left(b+c-2a\right)^3+\left(c+a-2b\right)^3=3\left(a+b-2c\right)\left(b+c-2a\right)\left(c+a-2b\right)\)

Chúc bạn học tốt.

12 tháng 8 2018

Đặt:  \(a+b-2c=x;\)   \(b+c-2a=y;\)\(c+a-2b=z\)

=>   \(x+y+z=0\)

=>  \(x^3+y^3+z^3=3xyz\)

Thay trở lại ta được:

\(\left(a+b-2c\right)^3+\left(b+c-2a\right)^3+\left(c+a-2b\right)^3\)

\(=3\left(a+b-2c\right)\left(b+c-2a\right)\left(c+a-2b\right)\)