Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\)Mình làm theo kiểu lược đồ
Nhẩm nghiệm của đa thức trên ta đc : 2
Có lược đồ sau :(dòng trên ghi các hệ số)
1 | -2 | -6 | 12 | |
2 | 1 | 0 | -6 | 0 |
Ta phân tích đc thành :\(\left(x-2\right)\left(x^2-6\right)\)
\(c,x^2-5x+4\)
\(=x^2-4x-x+4\)
\(=x\left(x-4\right)-\left(x-4\right)\)
\(=\left(x-1\right)\left(x-4\right)\)
\(d,3x^2+5x+2\)
\(=3x^2+3x+2x+2\)
\(=3x\left(x+1\right)+2\left(x+1\right)\)
\(=\left(x+1\right)\left(3x+2\right)\)
\(e,x^3-x+3x^2y+3xy^2+y^3-y\)
\(=\left(x^3+y^3\right)+3xy\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left[\left(x^2-xy+y^2\right)+3xy-1\right]\)
\(x^3-2x^2-6x+12\)
\(=x^2.\left(x-2\right)-6\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2-6\right)\)
\(x^4-7x^2+12\)
\(=\left[\left(x^2\right)^2-2.3,5x+3,5^2\right]-0,25\)
\(=\left(x^2-3,5\right)^2-0,5^2\)
\(=\left(x^2-3,5-0,5\right)\left(x^2-3,5+0,5\right)\)
\(=\left(x^2-4\right)\left(x^2-3\right)\)
Câu c tương tự câu b
a) a^2 (x-y) +y-x
= a^2 (x-y) -(x-y)
= (x-y) (a^2 -1)
= (x-y)(a-1)(a+1)
b) m^2 -25y^2+10y -1
= m^2 -(25y^2 -10y +1)
= m^2-(5y-1)^2
=(m-5y+1)(m+5y-1)
c) a^2 -4x^2 +8x -4
= a^2 -(4x^2 -8x+4)
=a^2 -( 2x-2)^2
=(a-2x+2)(a+2x-2)
a) Áp dụng định lý Pi-ta-go vào \(\Delta ABC\), ta có :
BC2= AB2+ AC2= 202+ 212= 400+ 441= 841(cm)
\(\Rightarrow\)BC= \(\sqrt{841}\)= 29(cm)
b) AD là phân giác Â
=> \(\dfrac{AB}{AC}\) = \(\dfrac{BD}{CD}\)
<=> \(\dfrac{AB}{BD}\) = \(\dfrac{AC}{CD}\) = \(\dfrac{AB+AC}{BD+CD}\) = \(\dfrac{41}{BC}\) = \(\dfrac{41}{29}\)
=> 29.AB = 41.BD
<=> BD = \(\dfrac{29.AB}{\text{41}}\) = \(\dfrac{29.20}{41}\)=\(\dfrac{580}{41}\)
DC= BC-BD= 29-\(\dfrac{580}{41}\)=\(\dfrac{609}{41}\)
ab(b - a) - bc(b - c) - ac(c - a)
= ab2 - a2b - b2c + bc2 + ac(a - c)
= b2(a - c) - b(a2 - c2) + ac(a - c)
= b2(a - c) - b(a - c)(a + c) + ac(a - c)
= (b2 - ab - bc + ac)(a - c)
= [b(b - a) - c(b - a)](a - c)
= (b - c)(b -a)(a - c)