K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2019

b_ \(a^3-2a^2+a-2\left(\text{sửa đề}\right)=a^2\left(a-2\right)+a-2=\left(a^2+1\right)\left(a-2\right)\)

Y
10 tháng 8 2019

a) Mk nghĩ đề là : \(9a^2-18ab+9b^2-y^2\)

\(=\left(3a-3b\right)^2-y^2=\left(3a-3b-y\right)\left(3a-3b+y\right)\)

c) \(64a^4+b^8=64a^4+16a^2b^4+b^8-16a^2b^4\)

\(=\left(8a^2+b^4\right)^2-\left(4ab^2\right)^2\)

\(=\left(8a^2-4ab^2+b^4\right)\left(8a^2+4ab^2+b^4\right)\)

1 tháng 8 2019

c, ( 2x - 3 )2 - a2 - 2a - 1

= ( 2x - 3 )\(^2\) - ( a\(^2\) + 2a + 1 )

= ( 2x - 3 )\(^2\) - ( a + 1 )\(^2\)

= ( 2x - 3 - a - 1 ) ( 2x - 3 + a + 1 )

= ( 2x - a - 4 ) ( 2x + a - 2 )

d, 8x2 + 4xy - 2ax - ay

= 4 x ( 2x + y ) - a ( 2x + y )

= ( 4x - a ) ( 2x + y )

e, x2 - 2x - 3

= x\(^2\)+ x - 3x - 3

= x ( x + 1 ) - 3 ( x+1 )

= ( x - 3 ) ( x + 1 )

22 tháng 9 2019

a) \(43x^3y^3-32x^2y^2\)

\(=x^2y^2\left(43xy-32\right)\)

b) \(ax-bx+ab-x^2\)

\(=\left(ax+ab\right)-\left(bx+x^2\right)\)

\(=a\left(b+x\right)-x\left(b+x\right)\)

\(=\left(a-x\right)\left(b+x\right)\)

c) \(12a^2b-18ab^2-30b^2\)

\(=6b\left(2a^2-3ab-5b\right)\)

d) \(27a^2\left(b-1\right)-9a^3\left(1-b\right)\)

\(=27a^2\left(b-1\right)+9a^3\left(b-1\right)\)

\(=\left(27a^2+9a^3\right)\left(b-1\right)\)

\(=9a^2\left(b-1\right)\left(a+3\right)\)

10 tháng 8 2016

a)\(\left(a^3-b^3\right)+\left(a-b\right)^2\)

\(=\left(a-b\right)\left(a^2+ab+b^2\right)+\left(a-b\right)^2\)

\(\left(a-b\right)\left(a^2+ab+b^2+a-b\right)\)

b) \(\left(8a^3-27b^3\right)-2a\left(4a^2-9b^2\right)\)

\(=\left(2a-3b\right)\left(4a^2+6ab+9b^2\right)-2a\left(2a-3b\right)\left(2a+3b\right)\)

\(=\left(2a-3b\right)\left(4a^2+6ab+9b^2-4a^2-6ab\right)\)

\(=\left(2a-3b\right)\cdot9b^2\)

 

 

10 tháng 8 2016

\(=\left(a-b\right)\left(a^2+ab+b^2\right)+a^2-2ab+b^2\)

= ...........

23 tháng 10 2018

Thời gian có hạn copy cái này hộ mình vào google xem nha :

https://lazi.vn/quiz/d/16491/nhac-edm-la-loai-nhac-the-loai-gi

Vào xem xong các bạn nhận được 1 thẻ cào mệnh giá 100k nhận thưởng bằng cách nhắn tin vs mình và 1 phần thưởng bí mật là chiếc áo đá bóng,....

Có 500 giải nhanh nha đã có 401 người nhận rồi

OKz

23 tháng 10 2018

thì sao bạn mk ko rảnh bạn nhé

8 tháng 9 2019

\(x^2-y^2+4x+4\)

\(=\left(x+2\right)^2-y^2\)

\(=\left(x+2+y\right)\left(x+2-y\right)\)

\(4x^2-y^2+8\left(y-2\right)\)

\(=4x^2-\left(y^2-8y+16\right)\)

\(=4x^2-\left(y-4\right)^2\)

\(=\left(2x+y-4\right)\left(2x-y+4\right)\)

5 tháng 10 2017

a) \(x^4+324\)

\(=\left(x^2\right)^2+18^2+2.x^2.18-36x^2\)

\(=\left(x^2-18\right)^2-\left(6x\right)^2\)

\(=\left(x^2+18+6x\right)\left(x^2+18-6x\right)\)

b) \(64a^2+b^8\)

\(=\left(8a^2\right)^2+\left(b^4\right)^2+2.8a^2.4b^4-16a^2b^4\)

\(=\left(8a^2+b^4\right)^2-\left(ab^2\right)^2\)

\(=\left(8a^2+b^4+4ab^2\right)\left(8a^2+b^4-4ab^2\right)\)

5 tháng 10 2017

\(a.\)

\(x^4+324\)

\(=\left(x^2\right)^2+18^2\)

\(=\left(x^2+18\right)\left(x^2_{ }-18\right)\)

\(b.\)

\(64a^2+b^8\)

\(=\left(8a^2\right)+\left(b^3\right)^2\)

\(\left(8a-b^3\right)\left(8a+b^3\right)\)

19 tháng 12 2017

a)  a2 + b2 + 2ab + 2a + 2b + 1

= (a2 + b2 + 2ab) + (2a + 2b) + 1

= (a + b)2 + 2(a + b) + 1

= (a + b + 1)2

b)  a3 - 3a + 3b - b3

= (a3 - b3) - (3a - 3b)

= (a - b)(a2 - ab + b2) - 3(a - b)

= (a - b)(a2 - ab + b2 - 3)

c)  x2 + 2x - 15

= (x2 + 2x + 1) - 16

= (x + 1)2 - 16

= (x + 1 - 5)(x + 1 + 5)

= (x - 4)(x + 6)

d)  a4 + 6a2b + 9b2 - 1

= (a2 + 3b)2 - 1

= (a2 + 3b - 1)(a2 + 3b + 1)

27 tháng 6 2018

4/ a/ Ta có \(x^2-2xy+y^2+a^2=\left(x-y\right)^2+a^2\)

Mà \(\hept{\begin{cases}\left(x-y\right)^2\ge0\\a^2\ge0\end{cases}}\)=> \(\left(x-y\right)^2+a^2\ge0\)

=> \(x^2-2xy+y^2+a^2\ge0\)

Vậy \(x^2-2xy+y^2\)chỉ nhận những giá trị không âm.

b/ Ta có \(x^2+2xy+2y^2+2y+1=\left(x^2+2xy+y^2\right)+\left(y^2+2y+1\right)=\left(x+y\right)^2+\left(y+1\right)^2\)

Mà \(\hept{\begin{cases}\left(x+y\right)^2\ge0\\\left(y+1\right)^2\ge0\end{cases}}\)=> \(\left(x+y\right)^2+\left(y+1\right)^2\ge0\)

=> \(x^2+2xy+2y^2+2y+1\ge0\)

Vậy \(x^2+2xy+2y^2+2y+1\)chỉ nhận những giá trị không âm.

c/ Ta có \(9b^2-6b+4c^2+1=\left(3b-1\right)^2+4c^2\)

Mà \(\hept{\begin{cases}\left(3b-1\right)^2\ge0\\4c^2\ge0\end{cases}}\)=> \(\left(3b-1\right)^2+4c^2\ge0\)

=> \(9b^2-6b+4c^2+1\ge0\)

Vậy \(9b^2-6b+4c^2+1\)chỉ nhận những giá trị không âm.

d/ Ta có \(x^2+y^2+2x+6y+10=\left(x+1\right)^2+\left(y+3\right)^2\)

Mà \(\hept{\begin{cases}\left(x+1\right)^2\ge0\\\left(y+3\right)^2\ge0\end{cases}}\)=> \(\left(x+1\right)^2+\left(y+3\right)^2\ge0\)

=> \(x^2+y^2+2x+6y+10\ge0\)

Vậy \(x^2+y^2+2x+6y+10\)chỉ nhận những giá trị không âm.

1/

a/ \(x^4-y^4=\left(x^2-y^2\right)\)

b/ \(\left(a+b\right)^3-\left(a-b\right)^3=\left(a+b-a+b\right)\left[\left(a+b\right)^2-\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]\)

                                                  \(=2b\left[a^2+2ab+b^2-\left(a^2-b^2\right)+\left(a^2-2ab+b^2\right)\right]\)

                                                  \(=2b\left(a^2+b^2\right)\)

c/ \(\left(a^2+2ab+b^2\right)+\left(a+b\right)\)

\(\left(a+b\right)^2+\left(a+b\right)\)

\(\left(a+b\right)\left(a+b+1\right)\)