Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,6x^2-9x=3x\left(x-3\right)\)
\(b,x^3-2x^2-3x+6\)
\(=\left(x^3-2x^2\right)-\left(3x-6\right)\)
\(=x^2\left(x-2\right)-3\left(x-2\right)\)
\(=\left(x^2-3\right)\left(x-2\right)\)
\(e,2x\left(x-y\right)-3y\left(x-y\right)\)
\(=\left(2x-3y\right)\left(x-y\right)\)
a) 6x2 - 9x
= 3x (2x - 3)
b) x3 - 2x2 - 3x + 6
= x2(x - 2) - 3 (x - 2)
=(x - 2) (x2 - 3)
c) x2 - 4x + 4 - 9y2
= (x - 2)2 - 9y2
=(x - 2 - 3y)(x - 2 + 3y)
e) 2x(x - y) - 3y(x - y)
= (x - y)(2x - 3y)
xin lỗi mình học ngu nên không biết làm nhìu nha
Câu 2 nha
\(a,x^4+2x^3+x^2\)
\(=x^2\left(x^2+2x+1\right)\)
\(=x^2\left(x+1\right)^2\)
\(c,x^2-x+3x^2y+3xy^2+y^3-y\)
\(=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(x+y\right)\)
\(=\left(x+y\right)^3-\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2+2xy+y^2-1\right)\)
a) \(A=x^2-2xy+y^2+3x-3y-4\)
\(=\left(x-y\right)^2-1+3x-3y-3\)
\(=\left(x-y-1\right)\left(x-y+1\right)+3\left(x-y-1\right)\)
\(=\left(x-y-1\right)\left(x-y+1+3\right)\)
\(=\left(x-y-1\right)\left(x-y+4\right)\)
\(x^2-3x+xy-3y\)
\(=x\left(x+y\right)-3\left(x+y\right)\)
\(=\left(x+y\right)\left(x-3\right)\)
\(x^2-2xy+y^2-4=\left(x-y\right)^2-2^2=\left(x-y-2\right)\left(x-y+2\right)\)
\(x^2+x-y^2+y=\left(x-y\right)\left(x+y\right)+\left(x+y\right)=\left(x+y\right)\left(x-y+1\right)\)
a) \(3^2\left(y-x\right)+6x^2\left(x-y\right)^2\)
\(=3\left(y-x\right)\left[3+2x^2\left(y-x\right)\right]\)
\(=3\left(y-x\right)\left(3+2x^2y-2x^3\right)\)
b) \(x^4-3x^3+3x-1\)
\(=\left(x^4+x^3\right)-\left(4x^3+4x^2\right)+\left(4x^2+4x\right)-\left(x+1\right)\)
\(=\left(x+1\right)\left(x^3-4x^2+4x-1\right)\)
\(=\left(x+1\right)\left[\left(x^3-x^2\right)-\left(3x^2-3x\right)+\left(x-1\right)\right]\)
\(=\left(x+1\right)\left(x-1\right)\left(x^2-3x+1\right)\)
Bài giải:
a) x2 + 4x – y2 + 4 = (x2 + 4x + 4) - y2
= (x + 2)2 – y2 = (x + 2 – y)(x + 2 + y)
b) 3x2 + 6xy + 3y2 – 3z2 = 3[(x2 + 2xy + y2) – z2]
= 3[(x + y)2 – z2] = 3(x + y – z)(x + y + z)
c) x2 – 2xy + y2 – z2 + 2zt – t2 = (x2 – 2xy + y2) – (z2 – 2zt + t2)
= (x – y)2 – (z – t)2
= [(x – y) – (z – t)] . [(x – y) + (z – t)]
= (x – y – z + t)(x – y + z – t)
48. Phân tích các đa thức sau thành nhân tử:
a) x2 + 4x – y2 + 4; b) 3x2 + 6xy + 3y2 – 3z2;
c) x2 – 2xy + y2 – z2 + 2zt – t2.
Bài giải:
a) x2 + 4x – y2 + 4 = (x2 + 4x + 4) - y2
= (x + 2)2 – y2 = (x + 2 – y)(x + 2 + y)
b) 3x2 + 6xy + 3y2 – 3z2 = 3[(x2 + 2xy + y2) – z2]
= 3[(x + y)2 – z2] = 3(x + y – z)(x + y + z)
c) x2 – 2xy + y2 – z2 + 2zt – t2 = (x2 – 2xy + y2) – (z2 – 2zt + t2)
= (x – y)2 – (z – t)2
= [(x – y) – (z – t)] . [(x – y) + (z – t)]
= (x – y – z + t)(x – y + z – t)
\(x^2-y^2+6x+9=\left(x+3\right)^2-y^2=\left(x+3+y\right)\left(x+3-y\right)\)
\(x^3+3x^2-9x-27=\left(x-3\right)\left(x^2+3x+9\right)+3x\left(x-3\right)=\left(x-3\right)\left(x^2+6x+9\right)=\left(x-3\right)\left(x+3\right)^2\)
Bài làm
a) 3x2 - 6x2 + 3x
= -3x2 + 3x
= 3x( 1 - x )
b) 3x2 + 5x - 3xy - 5y
= ( 3x2 - 3xy ) + ( 5x - 5y )
= 3x( x - y ) + 5( x - y )
= ( x - y )( 3x + 5 )
c) x3 + 2x2 + x
= x( x2 + 2x + 1 )
= x( x2 + 2.x.1 + 12 )
= x( x + 1 )2
d) xy + y2 - x - y
= ( xy - x ) + ( y2 - y )
= x( y - 1 ) + y( y - 1 )
= ( y - 1 )( x + y )
# Học tốt #
Ta có: \(3x^2\left(y-x\right)+6x^2\left(x-y\right)^2\)
\(=3x^2\left(y-x\right)+6x^2\left(y-x\right)^2\)
\(=3x^2\left(y-x\right)\left[1-2\left(y-x\right)\right]\)
\(=3x^2\left(y-x\right)\left(2x-2y+1\right)\)
3x2( y - x ) + 6x2( x - y )2
= 3x2( y - x ) + 6x2( y - x )2
= 3x2( y - x )[ 1 + 2( y - x ) ]
= 3x2( y - x )( 2y - 2x + 1 )
a) 3x2 + 6x
= 3x(x +2)
b) (x+2)2 - y2
= (x+2-y)(x+2+y)
c) x2 - 2xy + 2x + y2 - 2y
= (x2 - 2xy +y2) + 2(x-y)
= (x-y)2 + 2(x-y)
= (x-y)(x-y+2)
d) x2 - 3x-4
= x2 - 4x + x -4
= x(x-4)+ (x-4)
= (x-4)(x+ 1)