K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2017

 bÀI LÀM

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

11 tháng 7 2015

nhiêu đó ai giải        

9 tháng 10 2018

a, 4x- 12x + 9

= (2x + 3)2

b, 9x4y3 + 3x2y4

= 3x2y3(3x2 + y)

c, ( x - 3 )2 - 2x ( x - 3 )

= (x - 3)(x - 3 - 2x)

= (x - 3)(-x - 3)

d, 3x ( x - 1 ) + 6 ( x - 1 )

= 3(x - 1)(x + 2)

e, 2x ( x + 1 ) - 4x - 4

= 2x(x + 1) - 4(x + 1)

= (x + 1)(2x - 4)

= 2(x + 1)(x - 2)

f, ( 2x - 3 )2 - 4x + 6

= (2x - 3)2 - 2(2x - 3)

= (2x - 3)(2x - 3 - 2)

= (2x - 3)(2x - 5)

15 tháng 8 2019

\(Dat:a^2+a+1=b\Rightarrow....=a\left(a+1\right)-12=\left(a+4\right)\left(a-3\right)\) 

=

15 tháng 8 2019

a) \(\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)   (1)

Đặt x2 + x +1 = t 

Ta có : \(t\left(t+1\right)-12=t^2+t-12=t^2-3t+4t-12\)

\(=t\left(t-3\right)+4\left(t-3\right)=\left(t-3\right)\left(t+4\right)\)

Thay vào (1), ta được : \(\left(x^2+x+1-3\right)\left(x^2+x+1+4\right)=\left(x^2+x-2\right)\left(x^2+x+5\right)\)

\(=\left(x-1\right)\left(x+2\right)\left(x^2+x+5\right)\)

b) \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)  (2)

\(=\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x+4\right)-24\)

\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)

Đặt x2 + 7x + 11 = y

Ta có : \(\left(y-1\right)\left(y+1\right)-24=y^2-1-24=y^2-25=\left(y-5\right)\left(y+5\right)\)

Thay vào (2), ta được : \(\left(x^2+7x+11-5\right)\left(x^2+7x+11+5\right)=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)

\(=\left(x-1\right)\left(x+6\right)\left(x^2+7x+16\right)\)

22 tháng 10 2017

a) ( x2 + x)2 + 4( x2 + x) - 12

Đặt : x2 + x = a , ta có :

a2 + 4a - 12

= a2 - 4 + 4a - 8

= ( a - 2)( a +2) + 4( a - 2)

= ( a -2)( a +6)

Thay x2 + x = a , ta có :

( x2 + x - 2)( x2 + x +6)

= ( x2 - x + 2x - 2)( x2 + x +6)

= [ x( x - 1) + 2( x - 1)]( x2 + x +6)

= ( x + 2)( x - 1)( x2 + x +6)

b) ( x2 + x + 1)( x2 + x + 2) - 12

Đặt x2 + x + 1 = a , ta có :

a.( a + 1) - 12

= a2 + a - 12

= a2 - 32 + a - 3

= ( a - 3)( a +3) + ( a - 3)

= ( a - 3)( a +4)

Thay x2 + x + 1 = a , ta có :

( x2 + x - 2)( x2 + x + 5)

= [ x( x - 1) + 2( x - 1)]( x2 + x + 5)

= = ( x + 2)( x - 1)( x2 + x + 5)

c) ( x2 + 4x + 8)2 + 3x( x2 + 4x + 8) + 2x2

Đặt : x2 + 4x + 8 = a , ta có

a2 + 3ax + 2x2

= a2 + ax + 2ax + 2x2

= a( a + x) + 2x( a + x)

= ( a + 2x )( a +x)

Thay x2 + 4x + 8 = a , ta có

( x2 + 6x + 8)( x2 + 5x + 8)

a: \(=\left(x^2-2x\right)^2-\left(x^2-2x\right)-6\)

\(=\left(x^2-2x-3\right)\left(x^2-2x+2\right)\)

\(=\left(x^2-2x+2\right)\left(x-3\right)\left(x+1\right)\)

c: \(=\left(x^2+x+4+3x\right)\left(x^2+x+4+5x\right)\)

\(=\left(x^2+6x+4\right)\left(x^2+4x+4\right)\)

\(=\left(x^2+6x+4\right)\left(x+2\right)^2\)

2 tháng 11 2018

\(x^8+x+1\)

\(=x^8+x^7+x^6-x^7-x^6-x^5+x^5+x^4+x^3-x^4-x^3-x^2+x^2+x+1\)

\(=x^6\left(x^2+x+1\right)-x^5\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)-x^2\left(x^2+x+1\right)+x^2+x+1\)

\(=\left(x^2+x+1\right)\left(x^6-x^5+x^3-x^2+1\right)\)

29 tháng 1 2020

a)\(2x^3-x^2+5x+3=2x^3-2x^2+x^2+6x-x+3\)

\(=\left(2x^3-2x^2+6x\right)+\left(x^2-x+3\right)\)

\(=2x\left(x^2-x+3\right)+\left(x^2-x+3\right)\)

\(=\left(x^2-x+3\right)\left(2x+1\right)\)

b)\(27x^3-27x^2+18x-4=27x^3-18x^2-9x^2+12x+6x-4\)

\(=3x\left(9x^2-6x+4\right)-\left(9x^2-6x+4\right)\)

\(=\left(9x^2-6x+4\right)\left(3x-1\right)\)

c)\(4x^4-32x^2+1=4x^4+4x^2-36x^2+1\)

\(=\left(4x^4+4x^2+1\right)-36x^2\)

\(=\left(2x^2+1\right)^2-\left(6x\right)^2\)

\(=\left(2x^2+1+6x\right)\left(2x^2+1-6x\right)\)

a) Ta có: \(\left(x^2+x\right)^2-14\left(x^2+x\right)+24\)(1)

Đặt \(a=x^2+x\)

(1)\(=a^2-14a+24\)

\(=a^2-12a-2a+24\)

\(=a\left(a-12\right)-2\left(a-12\right)\)

\(=\left(a-12\right)\left(a-2\right)\)

\(=\left(x^2+x-12\right)\left(x^2+x-2\right)\)

\(=\left(x^2+4x-3x-12\right)\left(x^2+2x-x-2\right)\)

\(=\left[x\left(x+4\right)-3\left(x+4\right)\right]\left[x\left(x+2\right)-\left(x+2\right)\right]\)

\(=\left(x+4\right)\left(x-3\right)\left(x+2\right)\left(x-1\right)\)

b) Ta có: \(\left(x^2+x\right)^2+4x^2+4x-12\)

\(=\left(x^2+x\right)^2+4\left(x^2+x\right)-12\)

\(=a^2+4a-12\)

\(=a^2+6a-2a-12\)

\(=a\left(a+6\right)-2\left(a+6\right)\)

\(=\left(a+6\right)\left(a-2\right)\)

\(=\left(x^2+x+6\right)\left(x^2+x-2\right)\)

\(=\left(x^2+x+6\right)\left(x^2+2x-x-2\right)\)

\(=\left(x^2+x+6\right)\left[x\left(x+2\right)-\left(x+2\right)\right]\)

\(=\left(x^2+x+6\right)\left(x+2\right)\left(x-1\right)\)

c) Ta có: \(x^4+2x^3+5x^2+4x-12\)

\(=x^4-x^3+3x^3-3x^2+8x^2-8x+12x-12\)

\(=x^3\left(x-1\right)+3x^2\left(x-1\right)+8x\left(x-1\right)+12\left(x-1\right)\)

\(=\left(x-1\right)\left(x^3+3x^2+8x+12\right)\)

\(=\left(x-1\right)\left(x^3+2x^2+x^2+2x+6x+12\right)\)

\(=\left(x-1\right)\left[x^2\left(x+2\right)+x\left(x+2\right)+6\left(x+2\right)\right]\)

\(=\left(x-1\right)\left(x+2\right)\left(x^2+x+6\right)\)

d) Ta có: \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\)(2)

Đặt \(x^2+5x=b\)

(2)\(=\left(b+4\right)\left(b+6\right)+1\)

\(=b^2+10b+24+1\)

\(=b^2+10b+25\)

\(=\left(b+5\right)^2\)

\(=\left(x^2+5x+5\right)^2\)

e) Ta có: \(\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)

\(=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)(3)

Đặt \(c=x^2+8x\)

(3)\(=\left(c+7\right)\left(c+15\right)+15\)

\(=c^2+22c+105+15\)

\(=c^2+22c+120\)

\(=c^2+12c+10c+120\)

\(=c\left(c+12\right)+10\left(c+12\right)\)

\(=\left(c+12\right)\left(c+10\right)\)

\(=\left(x^2+8x+12\right)\left(x^2+8x+10\right)\)

\(=\left(x^2+6x+2x+12\right)\left(x^2+8x+10\right)\)

\(=\left[x\left(x+6\right)+2\left(x+6\right)\right]\left(x^2+8x+10\right)\)

\(=\left(x+6\right)\left(x+2\right)\left(x^2+8x+10\right)\)