Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^8+3x^4+4\)
\(=\left(x^8-x^6+2x^4\right)+\left(x^6-x^4+2x^2\right)+\left(2x^4-2x^2+4\right)\)
\(=x^4\left(x^4-x^2+2\right)+x^2\left(x^4-x^2+2\right)+2\left(x^4-x^2+2\right)\)
\(=\left(x^4+x^2+2\right)\left(x^4-x^2+2\right)\)
\(4x^4+4x^3+5x^2+2x+1\)
\(=\left(4x^4+2x^3+2x^2\right)+\left(2x^3+x^2+x\right)+\left(2x^2+x+1\right)\)
\(=2x^2\left(2x^2+x+1\right)+x\left(2x^2+x+1\right)+\left(2x^2+x+1\right)\)
\(=\left(2x^2+x+1\right)^2\)
Đề sai nhé .Sửu lại
\(x^2-4x^2y^2+4+4x\)
\(=\left(x^2+4x+4\right)-4x^2y^2\)
\(=\left(x+2\right)^2-\left(2xy\right)^2\)
\(=\left(x+2+2xy\right)\left(x+2-2xy\right)\)
\(n^7+n^2+1\)
\(=\left(n^7-n^6+n^4-n^3+n^2\right)\)\(+\left(n^6-n^5+n^3-n^2+n\right)\)
\(+\left(n^5-n^4+n^2-n+1\right)\)
\(=n^2\left(n^5-n^4+n^2-n+1\right)\)\(+n\left(n^5-n^4+n^2-n+1\right)\)
\(+\left(n^5-n^4+n^2-n+1\right)\)
\(=\left(n^2+n+1\right)\left(n^5-n^4+n^2-n+1\right)\)
\(m^6+n^4=\left(m^3\right)^2+2.m^3.n^2+\left(n^2\right)^2-2m^3n^2\)
\(=\left(m^3+n^2\right)^2-\left(\sqrt{2m^3}n\right)^2\)
\(=\left(m^3+n^2-\sqrt{2m^3}n\right)\left(m^3+n^2+\sqrt{2m^3}n\right)\).
4x4-32x2+1
=4x4+12x3+2x2-12x3-36x2-6x+2x2+6x+1
=2x2.(2x2+6x+1)-6x.(2x2+6x+1)+(2x2+6x+1)
=(2x2+6x+1)(2x2- 6x+1)
= 4x4 - 4x2 + 1 - 28x2 = [(2x2)2 - 2.2x2 .1 + 12 ] - 28x2 = (2x2 - 1)2 - (\(\sqrt{28}\).x)2
= (2x2 - 1 - \(\sqrt{28}\)x) .(2x2 -1 + \(\sqrt{28}\)x) = (2x2 - 2\(\sqrt{7}\)x - 1). (2x2 + 2\(\sqrt{7}\)x -1)
x^5+x^4+1=x^5+x^4+x^3-x^3-x^2-x+x^2+x+1=x^3(x^2+x+1)-x(x^2+x+1)+x^2+x+1=(x^3-x+1)(x^2+x+1)
\(x^5+x^4+1\)
\(=x^3\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^3-x+1\right)\left(x^2+x+1\right)\)
Ta có : x5 - x4 + x4 - x3 - x4 + x3 - x2 + x2 - x + x - 1
= x4(x - 1) + x3(x - 1) - x3(x - 1) - x2(x - 1) + x2(x - 1) + (x - 1)
= (x4 + x3 - x3 - x2 + x2 + 1) (x - 1)
= (x4 + 1)(x - 1)
\(n^4-1=\left(n^2-1\right)\left(n^2+1\right)=\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)