K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: \(MTC=2\left(x-y\right)\left(x+y\right)\)

\(\dfrac{x-y}{2x^2-4xy+2y^2}=\dfrac{x-y}{2\left(x-y\right)^2}=\dfrac{1}{2\left(x-y\right)}=\dfrac{1\cdot\left(x+y\right)}{2\left(x-y\right)\left(x+y\right)}=\dfrac{x+y}{2\left(x-y\right)\left(x+y\right)}\)

\(\dfrac{x+y}{2x^2+4xy+2y^2}\)

\(=\dfrac{x+y}{2\left(x^2+2xy+y^2\right)}\)

\(=\dfrac{x+y}{2\left(x+y\right)^2}=\dfrac{1}{2\left(x+y\right)}=\dfrac{x-y}{2\left(x+y\right)\left(x-y\right)}\)

\(\dfrac{1}{x^2-y^2}=\dfrac{2}{2\left(x^2-y^2\right)}=\dfrac{2}{2\left(x-y\right)\left(x+y\right)}\)

2: \(\dfrac{1}{x^2+8x+15}=\dfrac{1}{\left(x+3\right)\left(x+5\right)}=\dfrac{x+3}{\left(x+3\right)^2\cdot\left(x+5\right)}\)

\(\dfrac{1}{x^2+6x+9}=\dfrac{1}{\left(x+3\right)^2}=\dfrac{x+5}{\left(x+3\right)^2\cdot\left(x+5\right)}\)

3: \(\dfrac{1}{\left(a-b\right)\left(b-c\right)}=\dfrac{1\cdot\left(a-c\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=\dfrac{a-c}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)

\(\dfrac{1}{\left(c-b\right)\left(c-a\right)}=\dfrac{1}{\left(b-c\right)\left(a-c\right)}=\dfrac{a-b}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)

\(\dfrac{1}{\left(b-a\right)\left(a-c\right)}=\dfrac{-1}{\left(a-b\right)\left(a-c\right)}=\dfrac{-\left(b-c\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)

AH
Akai Haruma
Giáo viên
1 tháng 12 2021

Lời giải:
1.

\(\frac{a^3-4a^2-a+4}{a^3-7a^2+14a-8}=\frac{a^2(a-4)-(a-4)}{(a^3-8)-(7a^2-14a)}=\frac{(a-4)(a^2-1)}{(a-2)(a^2+2a+4)-7a(a-2)}\)

\(=\frac{(a-4)(a-1)(a+1)}{(a-2)(a^2-5a+4)}=\frac{(a-4)(a-1)(a+1)}{(a-2)(a-1)(a-4)}=\frac{a+1}{a-2}\)

2.

\(\frac{x^2y^2+1+(x^2-y)(1-y)}{x^2y^2+1+(x^2+y)(1+y)}=\frac{x^2y^2+1+x^2-x^2y-y+y^2}{x^2y^2+1+x^2+x^2y+y+y^2}\)

\(=\frac{(x^2y^2-x^2y+x^2)+(y^2-y+1)}{(x^2y^2+x^2y+x^2)+(y^2+y+1)}\)

\(=\frac{x^2(y^2-y+1)+(y^2-y+1)}{x^2(y^2+y+1)+(y^2+y+1)}=\frac{(x^2+1)(y^2-y+1)}{(x^2+1)(y^2+y+1)}=\frac{y^2-y+1}{y^2+y+1}\)

6 tháng 1 2021

B1: a)\(xy\left(3x-2y\right)-2xy^2=3x^2y-2y^2x-2xy^2=3x^2y-4xy^2\)

b) \(\left(x^2+4x+4\right):\left(x+2\right)=\left(x+2\right)^2:\left(x+2\right)=\left(x+2\right)\)

\(\dfrac{2\left(x-1\right)}{x^2}.\dfrac{x}{\left(x-1\right)}=\dfrac{2\left(x-1\right)x}{x^2\left(x-1\right)}=\dfrac{2}{x}\)

B2:

a)\(2x^2-4x+2=2\left(x^2-2x+1\right)=2\left(x-1\right)^2\)

b)\(x^2-y^2+3x-3y=\left(x-y\right)\left(x+y\right)+3\left(x-y\right)=\left(x-y\right)\left(x+y+3\right)\)

Mấy bài này là mấy bài rất rất rất cơ bản, học sinh TB cũng phải tự làm được, mấy bài kiểu này đừng nên đăng lên hỏi nha:vv

a: =-4xyz^2

b: =-9x^2y

c: =16x^2y^2

d: =1/6x^2y^3

e: =13/6x^3y^2

f: =7/12x^4y

30 tháng 5 2023

a) -xyz² - 3xz.yz

= -xyz² - 3xyz²

= -4xyz²

b) -8x²y - x.(xy)

= -8x²y - x²y

= -9x²y

c) 4xy².x - (-12x²y²)

= 4x²y² + 12x²y²

= 16x²y²

d) 1/2 x²y³ - 1/3 x²y.y²

= 1/2 x²y³ - 1/3 x²y³

= 1/6 x²y³

e) 3xy(x²y) - 5/6 x³y²

= 3x³y² - 5/6 x³y²

= 13/6 x³y²

f) 3/4 x⁴y - 1/6 xy.x³

= 3/4 x⁴y - 1/6 x⁴y

= 7/12 x⁴y

20 tháng 4 2017

Bài giải:

a) 3x - 6y = 3 . x - 3 . 2y = 3(x - 2y)

b) 25x2 + 5x3 + x2y = x2 (25 + 5x + y)

c) 14x2y – 21xy2 + 28x2y2 = 7xy . 2x - 7xy . 3y + 7xy . 4xy = 7xy(2x - 3y + 4xy)

d) 25x(y - 1) - 25y(y - 1) = 25(y - 1)(x - y)

e) 10x(x - y) - 8y(y - x) =10x(x - y) - 8y[-(x - y)]

= 10x(x - y) + 8y(x - y)

= 2(x - y)(5x + 4y)

4 tháng 9 2017

a,\(3x-6y=3\left(x-2y\right)\)

b,\(x^2(\dfrac{2}{5}+5x+y)\)

c,\(7xy\left(2x-3y+4xy\right)\)

d,\(\dfrac{2}{5}x\left(y-1\right)-\dfrac{2}{5}y\left(y-1\right)\)

=\(\dfrac{2}{5}\left(y-1\right)\left(x-y\right)\)

e,\(10x\left(x-y\right)-8y\left(y-x\right)=10x\left(x-y\right)+8y\left(x-y\right)\)

\(2\left(x-y\right)\left(5x+4y\right)\)

a: \(=\left(\dfrac{x}{y\left(x-y\right)}-\dfrac{2x-y}{x\left(x-y\right)}\right):\dfrac{x+y}{xy}\)

\(=\dfrac{x^2-2xy+y^2}{xy\left(x-y\right)}\cdot\dfrac{xy}{x+y}\)

\(=\dfrac{\left(x-y\right)^2}{\left(x-y\right)\left(x+y\right)}=\dfrac{x-y}{x+y}\)

b: \(=\dfrac{x^2+2xy+y^2-x^2+2xy-y^2+4y^2}{2\left(x-y\right)\left(x+y\right)}\cdot\dfrac{x-y}{2y}\)

\(=\dfrac{4xy+4y^2}{2\left(x+y\right)}\cdot\dfrac{1}{2y}=\dfrac{4y\left(x+y\right)}{4y\left(x+y\right)}=1\)

14 tháng 12 2018

\(a,\frac{x}{xy-y^2}+\frac{2x-y}{xy-x^2}:\left(\frac{1}{x}+\frac{1}{y}\right)\)

\(=\left(\frac{x}{y\left(x-y\right)}+\frac{y-2x}{x\left(x-y\right)}\right):\left(\frac{y}{xy}+\frac{x}{xy}\right)\)

\(=\left(\frac{x-y}{x\left(x-y\right)}\right):\left(\frac{x+y}{xy}\right)\)

\(=\frac{1}{x}.\frac{xy}{x+y}=\frac{y}{x+y}\)

29 tháng 11 2023

bài 1: ĐKXĐ: \(x\notin\left\{2;-2\right\}\)

\(\dfrac{x}{x+2}-\dfrac{x}{x-2}\)

\(=\dfrac{x\left(x-2\right)-x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{x^2-2x-x^2-2x}{\left(x-2\right)\left(x+2\right)}=-\dfrac{4x}{x^2-4}\)

Bài 2:

1: \(x^2y^2-8-1\)

\(=x^2y^2-9\)

\(=\left(xy-3\right)\left(xy+3\right)\)

2: \(x^3y-2x^2y+xy-xy^3\)

\(=xy\cdot x^2-xy\cdot2x+xy\cdot1-xy\cdot y^2\)

\(=xy\left(x^2-2x+1-y^2\right)\)

\(=xy\left[\left(x-1\right)^2-y^2\right]\)

\(=xy\left(x-1-y\right)\left(x-1+y\right)\)

3: \(x^3-2x^2y+xy^2\)

\(=x\cdot x^2-x\cdot2xy+x\cdot y^2\)

\(=x\left(x^2-2xy+y^2\right)=x\left(x-y\right)^2\)

4: \(x^2+2x-y^2+1\)

\(=\left(x^2+2x+1\right)-y^2\)

\(=\left(x+1\right)^2-y^2\)

\(=\left(x+1+y\right)\left(x+1-y\right)\)

5: \(x^2+2x-4y^2+1\)

\(=\left(x^2+2x+1\right)-4y^2\)

\(=\left(x+1\right)^2-4y^2\)

\(=\left(x+1-2y\right)\left(x+1+2y\right)\)

6: \(x^2-6x-y^2+9\)

\(=\left(x^2-6x+9\right)-y^2\)

\(=\left(x-3\right)^2-y^2=\left(x-3-y\right)\left(x-3+y\right)\)