K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2020

a) \(P\left(a,b\right)=3a^2-2ab+b^2=3a^2-3ab+ab-b^2\)\(=3a\left(a-b\right)+b\left(a-b\right)=\left(a-b\right)\left(3a+b\right)\)

b) \(P\left(a,b\right)=0\Leftrightarrow\orbr{\begin{cases}a-b=0\\3a+b=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a=b\\a=\frac{-b}{3}\end{cases}}}\)

+) \(a=b\Leftrightarrow M=\frac{a^2+a.a+2a^2}{2a^2-a^2}=4\)

+) \(a=\frac{-b}{3}\Rightarrow M=\frac{\left(\frac{-b}{3}\right)^2+\left(\frac{-b}{3}\right).b+2b^2}{2.\left(\frac{-b}{3}\right)^2-b^2}=\frac{\frac{16}{9}b^2}{\frac{-7}{9}b^2}=\frac{-16}{7}\)

22 tháng 9 2020

cảm ơn Đặng Ngọc Quỳnh nhé :>

27 tháng 12 2023

ax - bx - a² + 2ab - b²

= (ax - bx) - (a² - 2ab + b²)

= x(a - b) - (a - b)²

= (a - b)(x - a + b)

27 tháng 12 2016

Giải nhanh dùm mem đi

27 tháng 12 2016

phan h nhan vo la duoc

30 tháng 10 2021

a) \(a^2+ab-7a-7b=a\left(a+b\right)-7\left(a+b\right)=\left(a+b\right)\left(a-7\right)\)

b) \(5ab+4c+20b+ac=5b\left(a+4\right)+c\left(a+4\right)=\left(a+4\right)\left(5b+c\right)\)

c) \(a^2+6a-b^2+9=\left(a+3\right)^2-b^2=\left(a+b-b\right)\left(a+3+b\right)\)

d) \(a^2-16=\left(a-4\right)\left(a+4\right)\)

NM
10 tháng 10 2021

ta có :

undefined

16 tháng 1 2018

Ta có

25   –   a 2   +   2 a b   –   b 2     =   25   –   ( a 2   –   2 a b   +   b 2 )     =   5 2   –   ( a   –   b ) 2

 

= (5 + a – b)(5 – a + b)

Đáp án cần chọn là: D

20 tháng 9 2020

 .\(a\left(b^2+c^2\right)+b\left(c^2+a^2\right)+c\left(a^2+b^2\right)-2abc-a^3-b^3-c^3\)

=\(a\left(b^2-2bc+c^2-a^2\right)+b\left(a^2+2ac+c^2-b^2\right)+c\left(a^2-2ab+b^2-c^2\right)\)

=\(a\left[\left(b-c\right)^2-a^2\right]+b\left[\left(a+c\right)^2-b^2\right]+=c\left[\left(a-b^2\right)-c^2\right]\)

=\(a\left(c-b+a\right)\left(a+b-c\right)+b\left(a+c-b\right)\left(a+b+c\right)+c\left(a-b+c\right)\left(a-b-c\right)\)

=\(\left(a+c-b\right)\left[a\left(c-b+a\right)+b\left(a+b+c\right)+c\left(a-b-c\right)\right]\)

=\(\left(a+c-b\right)\left(b+a-c\right)\left(c+b-a\right)\)

21 tháng 3 2017

\(a\left(b^2+c^2\right)+b\left(a^2+c^2\right)+c\left(a^2+b^2\right)-2abc-a^3-b^3-c^3\)

\(=c\left(a-b\right)^2+\left[ab^2+ac^2+a^2b+bc^2-a^3-b^3-c^3\right]\)

\(=c\left(a-b\right)^2+c^2\left(a+b-c\right)+ab^2+a^2b-a^3-b^3\)

\(=c\left(a-b\right)^2+c^2\left(a+b-c\right)-\left(a^3-a^2b\right)+\left(ab^2-b^3\right)\)

\(=c\left(a-b\right)^2+c^2\left(a+b-c\right)-a^2\left(a-b\right)+b^2\left(a-b\right)\)

\(=c\left(a-b\right)^2+c^2\left(a+b-c\right)-\left(a+b\right)\left(a-b\right)^2\)

\(=-\left(a-b\right)^2\left(a+b-c\right)+c^2\left(a+b-c\right)\)

\(=\left(a+b-c\right)\left(a-b+c\right)\left(-a+b+c\right)\)

a: Ta có: \(\left(a^2+b^2-5\right)^2-4\left(ab+2\right)^2\)

\(=\left(a^2+b^2-5-2ab-4\right)\left(a^2+b^2-5+2ab+4\right)\)

\(=\left[\left(a-b\right)^2-9\right]\cdot\left[\left(a+b\right)^2-1\right]\)

\(=\left(a-b-3\right)\left(a-b+3\right)\left(a+b-1\right)\left(a+b+1\right)\)

22 tháng 9 2021

\(a^2-b^2-2x\left(a-b\right)=\left(a-b\right)\left(a+b\right)-2x\left(a-b\right)=\left(a-b\right)\left(a+b-2x\right)\)

\(a^2-b^2-2x\left(a-b\right)\)

\(=\left(a-b\right)\left(a+b\right)-2x\left(a-b\right)\)

\(=\left(a-b\right)\left(a+b-2x\right)\)