Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HM là đường cao ứng với cạnh huyền AB, ta được:
\(AM\cdot AB=AH^2\)(1)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HN là đường cao ứng với cạnh huyền AC, ta được:
\(AN\cdot AC=AH^2\)(2)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)
`D=(sqrt{3}.sqrt{5-2sqrt6})/(sqrt3-sqrt2)-1/(2-sqrt3)`
`=(sqrt3*sqrt{3-2sqrt{3}.sqrt2+2})/(sqrt3-sqrt2)-(2+sqrt3)/(4-3)`
`=(sqrt3.sqrt{(sqrt3-sqrt2)^2})/(sqrt3-sqrt2)-2-sqrt3`
`=sqrt3-2-sqrt3=-2`
\(b,\dfrac{\sqrt{12}-\sqrt{6}}{\sqrt{30}-\sqrt{15}}=\dfrac{\sqrt{6}\left(\sqrt{2}-1\right)}{\sqrt{15}\left(\sqrt{2}-1\right)}=\dfrac{\sqrt{6}}{\sqrt{15}}=\dfrac{\sqrt{2}}{\sqrt{5}}\)
\(d,\dfrac{ab-bc}{\sqrt{ab}-\sqrt{bc}}=\dfrac{\left(\sqrt{ab}-\sqrt{bc}\right)\left(\sqrt{ab}+\sqrt{bc}\right)}{\left(\sqrt{ab}-\sqrt{bc}\right)}=\sqrt{ab}+\sqrt{bc}=\sqrt{b}\left(\sqrt{a}+\sqrt{c}\right)\)
\(e,\left(a\sqrt{\dfrac{a}{b}+2\sqrt{ab}}+b\sqrt{\dfrac{a}{b}}\right)\sqrt{ab}\)
\(=a\left(\sqrt{\dfrac{a}{b}+\dfrac{2b.\sqrt{ab}}{b}}+b\sqrt{\dfrac{a}{b}}\right)\sqrt{ab}\)
\(=a\sqrt{a}\sqrt{a+2b\sqrt{ab}}+b\sqrt{a^2}\)
\(=a\sqrt{a^2+2ab\sqrt{ab}}+ab\)
\(=a\left(\sqrt{a^2+2ab\sqrt{ab}}+b\right)\)
\(f,\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\dfrac{1+a\sqrt{a}}{1+\sqrt{a}}-\sqrt{a}\right)\)
\(=\left(a+\sqrt{a}+1+\sqrt{a}\right)\left(a-\sqrt{a}+1-\sqrt{a}\right)\)
\(=\left(a+2\sqrt{a}+1\right)\left(a-2\sqrt{a}+1\right)\)
\(=\left(\sqrt{a}+1\right)^2\left(\sqrt{a}-1\right)^2\)
\(=\left(a-1\right)^2=a^2-2a+1\)
b) Gọi giao điểm của (d) với Ox là điểm A. \(\Rightarrow y=0.\)
\(\Rightarrow\) \(OA=\left|\dfrac{-4}{m}\right|=\dfrac{4}{\left|m\right|}.\) (đvđd).
Gọi giao điểm của (d) với Oy là điểm B. \(\Rightarrow x=0.\)
\(\Rightarrow OB=4\) (đvđd).
Ta có: \(S_{\Delta ABC}=\dfrac{1}{2}OA.OB=\dfrac{1}{2}.\dfrac{4}{\left|m\right|}.4=8\) (đvdt).
\(\Rightarrow\dfrac{4}{\left|m\right|}=4.\Leftrightarrow\left|m\right|=1.\Leftrightarrow\left[{}\begin{matrix}m=1.\\m=-1.\end{matrix}\right.\)
a: \(E=\dfrac{1}{\sqrt{x}+1}:\dfrac{\sqrt{x}+1+x}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\)
c: Xét ΔBDA vuông tại D và ΔBFC vuông tại F có
\(\widehat{DBA}\) chung
Do đó: ΔBDA\(\sim\)ΔBFC
Suy ra: BD/BF=BA/BC
hay BD/BA=BF/BC
Xét ΔBDF và ΔBAC có
BD/BA=BF/BC
\(\widehat{FBD}\) chung
Do đó: ΔBDF\(\sim\)ΔBAC
Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
\(\widehat{EAB}\) chung
Do đó: ΔAEB\(\sim\)ΔAFC
Suy ra: AE/AF=AB/AC
hay AE/AB=AF/AC
Xét ΔAEF và ΔABC có
AE/AF=AB/AC
\(\widehat{FAE}\) chung
Do đó: ΔAEF\(\sim\)ΔABC
Xét ΔCEB vuông tại E và ΔCDA vuông tại D có
\(\widehat{DCA}\) chung
Do đó: ΔCEB\(\sim\)ΔCDA
Suy ra: CE/CD=CB/CA
hay CE/CB=CD/CA
Xét ΔCED và ΔCBA có
CE/CB=CD/CA
\(\widehat{ECD}\) chung
Do đó: ΔCED\(\sim\)ΔCBA
a: Thay x=1 và y=2 vào (d), ta được:
\(m+1-2m+3=2\)
\(\Leftrightarrow4-m=2\)
hay m=2
\(a,\) \(\left(d\right)\) đi qua \(A\left(1;2\right)\Leftrightarrow x=1;y=2\)
\(\Leftrightarrow2=m+1-2m+3\Leftrightarrow m=2\)
\(b,m=2\Leftrightarrow\left(d\right):y=3x-2\cdot2+3=3x-1\)
\(y=2\Leftrightarrow x=1\Leftrightarrow A\left(1;2\right)\\ y=5\Leftrightarrow x=2\Leftrightarrow B\left(2;5\right)\)