Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Ta phân tích số 2100:
\(2100=23.3.7.52\)
=>Số 2100 chia hết cho các số nguyên tố \(2;3;5;7\)
Vì \(2100=2^2.3.5^5.7\)
nên 2100 chia hết các thừa số nguyên tố là 2;3;5;7
a: \(180=2^2\cdot3^2\cdot5\)
b: \(2034=2\cdot3^2\cdot113\)
c: \(1500=2^2\cdot3\cdot5^3\)
d: \(4000=2^5\cdot5^3\)
e: \(504=2^3\cdot3^2\cdot7\)
a) 180 = 2².3².5
b) 2034 = 2.3².113
c) 1500 = 2².3.5³
d) 4000 = 2⁵.5³
e) 504 = 2³.3².7
Lan Hương ơi !!! M đố mấy bài này thì bố thằng nào làm nổi toàn câu khó.
T chịu luôn , t không biết.
a)Ta có:
5.4.7 +516 =5.4.7+4.129=4.(5.7+129) chia hết cho 4
=>5.4.7+516 là hợp số
b)ta có:
25.2-9.5 =5.5.2-9.5=5.(5.2-9) chia hết cho 5
=>25.2-9.5 là hợp số
Giải:
a) Mọi số nguyên tố p lớn hơn 2 đều không chia hết cho 2 ---> p có dạng 2k+1 (k thuộc N, k > 0)
...Xét 2 TH :
...+ k chẵn (k = 2n) ---> p = 2k+1 = 2.2n + 1 = 4n+1
...+ k lẻ (k = 2n-1) ---> p = 2k+1 = 2.(2n-1) + 1 = 4n-1
...Vậy p luôn có dạng 4n+1 hoặc 4n-1
b) Mọi số nguyên tố p lớn hơn 3 đều ko chia hết cho 3 ---> p có dạng 3k+1 hoặc 3k-1
...Nếu k lẻ thì p sẽ chẵn và nó ko phải là số nguyên tố (vì p > 3).
...Vậy k phải chẵn, k = 2n với n > 0 (để p > 3).Xét 2 TH :
...+ p = 3k+1 = 3.2n + 1 = 6n+1
...+ p = 3k-1 = 3.2n -1 = 6n - 1
...Vậy p luôn có dạng 6n+1 hoặc 6n-1.
Cách 2:
a) Mỗi số tự nhiên chia cho 4 có thể dư 0; 1;2;3
=> có thể có các dạng sau: 4n - 1; 4n ; 4n + 1 ; 4n + 2
Vì p là số nguyên tố nên p > 2 nên p lẻ => p không thể bằng 4n hoặc 4n + 2
Vậy p có thể có dạng 4n - 1 hoặc 4n + 1
b) Tương tự, mọi số tự nhiên đều có thể viết dạng: 6n - 2; 6n - 1; 6n ; 6n + 1; 6n + 2; 6n + 3
Vì p là số nguyên tố > 3 => p không chia hết cho 2 và 3
=> p không thể = 6n - 2; 6n; 6n + 2 ; 6n + 3
Vậy p có thể có dạng 6n - 1 hoặc 6n + 1
a, 180=22.32.5180=22.32.5
b, 2034=2.32.113
hok tốt nha
a, \(2^{^2}.3^2.5\)\(=180\)
b, \(2.3^2.113\)\(=2034\)
Hok tốt~