Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) = 3 ( x^2 + 2xy + y^2 - z^2 )
= 3 [ ( x + y)^2 - z^2]
= 3 ( x + y - z)( x + y + z)
b) 4 y^ 2 - 5 y - 6 = 4y^2 - 8y + 3y - 6 = 4y ( y- 2 ) + 3 ( y- 2 ) = ( 4y +3 )( y - 2 )
d) x^4 + x^2y^2 + y^4 = x^4 + 2 x^2y^2 + y^4 - x^2y^2 = ( x^2 + y^2 )^2 - (xy)^2 = ( x^2 - xy + y^ 2)( x^2 + xy + y^2)
a,
\(\left(x^2+1\right)^2-4x^2=\left(x^2+1\right)^2-\left(2x\right)^2\)
\(=\left(x^2+2x+1\right)\left(x^2-2x+1\right)=\left(x+1\right)^2\left(x-1\right)^2=\left[\left(x+1\right)\left(x-1\right)\right]^2\)
b,
\(1-4x^2=1^2-\left(2x\right)^2=\left(2x+1\right)\left(1-2x\right)\)
c,
\(3y^2-3z^2+3x^2+6xy=3\left(x^2+2xy+y^2-z^2\right)\)
\(=3\left[\left(x+y\right)^2-z^2\right]=3\left(x+y+z\right)\left(x+y-z\right)\)
d,
\(x^5-3x^4+3x^3-x^2=x^2\left(x^3-3x^2+3x-1\right)=x^2\left(x-1\right)^3\)
e,
\(3x^2-6x-2x+x=3x^2-7x=x\left(3x-7\right)\)
c) \(3x^2-6x+9y^2=3\left(x^2-2x+3y^2\right)\)
h) \(3y^2-3z^2+3x^2+6xy=3\left(x^2-z^2+x^2+2xy\right)\)
\(=3\left[\left(x+y\right)^2-z^2\right]=3\left(x+y+z\right)\left(x+y-z\right)\)
g) \(3x^2+5y-3xy-5x=\left(3x^2-3xy\right)+\left(5y-5x\right)=3x\left(x-y\right)+5\left(y-x\right)=\left(x-y\right)\left(3x-5\right)\)
a) 3x^2 y - 6xy^2 = 3xy ( x - 2y)
b) 9 - ( x- y)^2 = ( 3 )^2 - ( x- y)^2
= ( 3 -x + y )( 3 + x + y )
a/ \(3x^2y-6xy^2\)\(=3xy\left(x-2y\right)\) ( đây là p2 đặt nhân tử chung )
b/9-(x -y )2 =( 3 -x +y ) ( 3 + x+y ) ( dùng hđt số 3 để giải )
a) x^2+4x-y^2+4=(x^2+4x+4)-y^2=(x+2)^2-y^2=(x+2-y)(x+2+y)
b)3x^2+6xy+3y^2-3z^2=3[(x^2+2xy+y^2)-z^2]=3[(x+y)^2-z^2]=3(x+y-z)(x+y+z)
a) = (x^2 + 2.2.x + 2^2) - y^2 = (x + 2)^2 - y^2 =(x + 2 - y) . (x + 2 +y)
1) \(x^3-x+y^3-y\)
\(=\left(x^3+y^3\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2-1\right)\)
2)\(3x^2+6xy+3y^2-3z^2=3\left(x^2+2xy+y^2-z^2\right)\)
\(=3\left[\left(x+y\right)^2-z^2\right]=3\left(x+y-x\right)\left(x+y+z\right)\)
3)\(x^3+y^3-3x-3y=\left(x+y\right)\left(x^2-xy+y^2\right)-3\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2-3\right)\)
\(1.x^3+y^3-x-y=\left(x+y\right)\left(x^2-xy+y^2\right)-\left(x+y\right)=\left(x+y\right)\left(x^2-xy+y^2-1\right)\)
2.\(3\left(x^2+6xy+y^2-z^2\right)=3\left[\left(x+y\right)^2-z^2\right]=3\left(x+y+z\right)\left(x+y-z\right)\)
3.\(\left(x+y\right)\left(x^2-xy+y^2\right)-3\left(x+y\right)=\left(x+y\right)\left(x^2-xy+y^2-3\right)\)
cho mình nha
đề là j
(2x+3).(5x2-2x)
=10x3-4x2+15x2-6x
=10x3+11x2-6x