K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2017

\(a^4+a^2+1\)

\(=a^4-a+a^2+a+1\)

\(=a\left(a^3-1\right)+\left(a^2+a+1\right)\)

\(=a\left(a-1\right)\left(a^2+a+1\right)+\left(a^2+a+1\right)\)

\(=\left(a^2+a+1\right)\left[a\left(a-1\right)+1\right]\)

\(=\left(a^2+a+1\right)\left(a^2-a+1\right)\)

15 tháng 10 2020

a4 + a2 +1 = a4 +2a2 + 1 - a2

                  = (a4 +2a2 + 1) - a2

                  = (a2 + 1)2 - a2

                      = (a2 + 1 - a)(a2 + 1 +a)

18 tháng 7 2017

Bổ sung nha :

(x - y)2 - (2m - n)2

= (x - y -2m - n) . (x - y + 2m - n) .

Chúc bạn học tốt !

18 tháng 7 2017

x2-2xy+y2-4m2+4mn-n2 mới đúng tui giải cho

<=> (x-y)2-(4m-n)2< Áp dụng hằng đẳng thức số 2 >

<=> (x-y-4m-2).(x-y+4m-2) < HĐT số 3 >

17 tháng 8 2017

đúng là cái đồ ngu ngu như chó

17 tháng 8 2017

nè , tui nói gì chưa mà chửi , tui chưa chửi bạn đâu 

17 tháng 7 2017

\(-16a^4b^6-24a^5b^5-9a^6b^4\)

\(=-a^4b^4\left(16b^2+24ab+9a^2\right)\)

\(=-a^4b^4\left[\left(4b\right)^2+2\cdot4\cdot3\cdot ab+\left(3a\right)^2\right]\)

\(=-a^4b^4\cdot\left(3a+4b\right)^2\)

30 tháng 10 2021

1/\(=a\left(a-b\right)+\left(a-b\right)=\left(a-b\right)\left(a+1\right)\)

2/ \(=\left(x^2-2x+1\right)-y^2=\left(x-1\right)^2-y^2=\left(x-y-1\right)\left(x+y-1\right)\)

6 tháng 10 2016

Bạn đưa ra 1 ví dụ đi rồi mình giảng

13 tháng 10 2019

\(a^4\left(b-c\right)+b^4\left(c-a\right)+c^4\left(a-b\right)\)

\(=a^4\left(b-c\right)+b^4[\left(c-b\right)-\left(a-b\right)]+c^4\left(a-b\right)\)

\(=a^4\left(b-c\right)+b^4\left(c-b\right)-b^4\left(a-b\right)+c^4\left(a-b\right)\)

\(=a^4\left(b-c\right)-b^4\left(b-c\right)-b^4\left(a-b\right)+c^4\left(a-b\right)\)

\(=\left(b-c\right)\left(a^4-b^4\right)-\left(a-b\right)\left(c^4-b^4\right)\)

\(=\left(b-c\right)\left(a^2-b^2\right)\left(a^2+b^2\right)-\left(a-b\right)\left(c^2-b^2\right)\left(c^2+b^2\right)\)

\(=\left(b-c\right)\left(a-b\right)\left(a+b\right)\left(a^2+b^2\right)+\left(a-b\right)\left(b-c\right)\left(c+b\right)\left(c^2+b^2\right)\)

\(=\left(b-c\right)\left(a-b\right)[\left(a+b\right)\left(a^2+b^2\right)+\left(c+b\right)\left(c^2+b^2\right)]\)

a: \(4x^2-4x\)

\(=4x\cdot x-4x\cdot1\)

\(=4x\left(x-1\right)\)

b: \(x^2-2xy+y^2-4\)

\(=\left(x-y\right)^2-2^2\)

\(=\left(x-y-2\right)\left(x-y+2\right)\)

1 tháng 11 2023

`4x^2-4x`

`= 4x(x-1)`

__

`x^2 -2xy +y^2-4`

`= (x^2-2xy+y^2)-2^2`

`=(x-y)^2 -2^2`

`=(x-y-2)(x-y+2)`

20 tháng 7 2017

\(2x^3-3x^2+3x-1=x^3+x^3-3x^2+3x-1\)

=\(x^3+\left(x^3-3x^2+3x-1\right)\)=\(x^3+\left(x-1\right)^3\)

=\(\left(x+x-1\right)\left(x^2-x\left(x-1\right)+\left(x-1\right)^2\right)\)

=\(\left(2x-1\right)\left(x^2-x^2+x+x^2-2x+1\right)\)

=\(\left(2x-1\right)\left(x^2-x+1\right)\)