Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x^3-2xy^2-8x^2+8xy\)
\(=2x\left(x^2-y^2-4x+4y\right)\)
\(=2x\left[\left(x^2-y^2\right)-4\left(x-y\right)\right]\)
\(=2x\left[\left(x-y\right)\left(x+y\right)-4\left(x-y\right)\right]\)
\(=2x\left(x-y\right)\left(x+y-4\right)\)
2x^3 - 2xy^2 - 8x^2 + 8xy
= 2x^2 ( x - y ) - 8x ( x - y )
= ( x - y ) ( 2x^2 - 8x )
= ( x - y ) 2x ( x - 4 )
1) x(x - y) + x - y
= x.(x - y) + (x - y)
= (x - y).(x + 1)
2) Câu b sai đề nên mk sửa lại nha
2x3 + x2 - 8x - 4
= (2x3 + x2) - (8x + 4)
= x2.(2x + 1) - 4.(2x + 1)
= (2x + 1).(x2 - 4)
= (2x + 1).(x - 2).(x + 2)
3) 2x2 - 8xy - 5x + 20y
= (2x2 - 5x) - (8xy - 20y)
= x.(2x - 5) - 4y.(2x - 5)
= (2x - 5).(x - 4y)
1) ( x+1) ( x-y)
2) 2x3 + x2 - 8x - 4= 2x3 - 4x2 + 5x2 - 10x + 2x - 4 = 2x2 ( x-2) + 5x( x -2) + 2(x -2)
=( 2x2 + 5x + 2)( x-2)
=( 2x2 + 4x + x + 2)( x-2)
=[ 2x( x+2) + ( x-2)]( x-2)
= ( 2x +1)( x+2)( x-2)
3) 2x2 - 8xy - 5x + 20y
= 2x ( x - 4y) - 5( x-4y)= ( 2x-5)(x-4y)
a. -\(-16x^2+8xy-y^2+49\)
= \(\left(-\left(4x\right)^2+8xy-y^2\right)+49\)
= \(-\left(\left(4x^2\right)-8xy+y^2\right)+49\)
= \(-\left(4x-y\right)^2+49\)
b. \(y^2\left(x^2+y\right)-zx^2-zy\)
= \(y^2\left(x^2+y\right)-z\left(x^2+y\right)\)
= \(\left(x^2+y\right)\left(y^2-z\right)\)
_16x2+8xy_y2+49
=( _(4x)2+2 × 4 × xy _ y2 )+ 72
= _((4x)2_ 2×4×x × xy +y2)+72
= _(4x_y)2+72
=72_(4x_y)2
= (7_(4x_y))×(7+(4x_y))
= (7_4x+y)×(7+4x_y)
2)y2×(x2+y)_zx2_zy
=y×(x2+y)_z(x2+y)
= ( x2+y)×(y_z)
\(16x^2+y^2+4y-16x-8xy\)
\(=\left(4x-y\right)^2-4\left(4x-y\right)\)
\(=\left(4x-y\right)\left(4x-y-4\right)\)
a) \(16x^2+y^2+4y-16x-8xy\)
\(=\left(4x\right)^2-8xy+y^2+4\left(y-4x\right)\)
\(=\left(4x-y\right)^2+4\left(y-4x\right)\)
\(=\left(y-4x\right)^2+4\left(y-4x\right)=\left(y-4x\right)\left(y-4x+4\right)\)
a,\(8x^2-8xy+2x=2x\left(4x-8y+1\right)\)
b,\(\left(x^2+2x\right)\left(x^2+4x+3\right)-24=x\left(x+2\right)\left(x+1\right)\left(x+3\right)-24\)
\(=\left(x^2+3x\right)\left(x^2+3x+2\right)-24=\left(t+1\right)\left(t-1\right)-24=t^2-5^2=\left(t+5\right)\left(t-5\right)\)
\(=\left(x^2+3x+6\right)\left(x^2+3x-4\right)\)( đặt t = x2 + 3x + 1 )