K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2015

Ta có: M = xy(x+y) + yz(y+z) + xz (x+z) + 2xyz 

= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz 

= xy(x + y) + yz(y + z + x) + xz(x + z + y) 

= xy(x + y) + z(x + y + z)(x + y) 

= (x + y)(xy + zx + zy + z2

= (x + y)[x(y + z) + z(y + z)] 

M = (x + y)(y + z)(z + x) (đpcm)

25 tháng 6 2017

17 tháng 11 2019

a) (x - 1)(x + l)(x - 2)(x - 4).      b) (x - 2)( x 2  + 4).

c) 2y(3 x 2   +   y 2 ).                          d) 2(x + y + z) ( a   -   b ) 2 .

24 tháng 8 2021

a. \(x^2\left(x-3\right)^2-\left(x-3\right)^2-x^2+1\)

\(=\left(x-3\right)^2\left(x^2-1\right)-\left(x^2-1\right)\)

\(=\left[\left(x-3\right)^2-1\right]\left(x^2-1\right)\)

\(=\left(x-3+1\right)\left(x-3-1\right)\left(x+1\right)\left(x-1\right)\)

\(=\left(x-2\right)\left(x-4\right)\left(x+1\right)\left(x-1\right)\)

b. \(x^3-2x^2+4x-8\)

\(=\left(x^3+4x\right)-\left(2x^2+8\right)\)

\(=x\left(x^2+4\right)-2\left(x^2+4\right)\)

\(=\left(x-2\right)\left(x^2+4\right)\)

c. \(\left(x+y\right)^3-\left(x-y\right)^3\)

\(=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(x^3-3x^2y+3xy^2-y^3\right)\)

\(=x^3+3x^2y+3xy^2+y^3-x^3+3x^2y-3xy^2+y^3\)

\(=6x^2y+2y^3\)

\(=2y\left(3x^2+y^2\right)\)

d. \(2a^2\left(x+y+z\right)-4ab\left(x+y+z\right)+2b^2\left(x+y+z\right)\)

\(=\left(2a^2-4ab+2b^2\right)\left(x+y+z\right)\)

\(=2\left(a^2-2ab+b^2\right)\left(x+y+z\right)\)

\(=2\left(a-b\right)^2\left(x+y+z\right)\)

6 tháng 8 2017

a,Từ giả thiết ta có

(x2+y2+z2)(x+y+z)2+(xy+yz+zx)2

=(x2+y2+z2)(x2+y2+z2+2xy+2yz+2zx)+(xy+yz+zx)2

Đặt x2+y2+z2=a

xy+yz+zx=b

=>(x2+y2+z2)(x2+y2+z2+2xy+2yz+2zx)+(xy+yz+zx)2

=a(a+2b)+b2

=a2+2ab+b2

=(a+b)2

=(x2+y2+z2+xy+yz+zx)2

câu b hơi dài mình gửi sau nhé

6 tháng 8 2017

Ta có: 2(x^4+y^4+z^4)-(x^2+y^2+z^2)^2-2(x^2+y^2+z^2)(x+y+z)^2+(x+y+z)^4

Gọi x^4+y^4+z^4=a

x^2+y^2+z^2=b

x+y+z=c

=>2(x^4+y^4+z^4)-(x^2+y^2+z^2)^2-2(x^2+y^2+z^2)(x+y+z)^2+(x+y+z)^4=2a-b^2-2bc^2+c^4

=2a-2b^2+b^2-2bc^2+c^4

=2(a-b^2)+(b+c^2)^2

Ta có

2(a-b2)=2[x^4+y^4+z^4-(x^2+y^2+z^2)2]

=2[x^4+y^4+z^4-x^4-y^4-z^4-2x2y2-2y2z2-2z2x2]

=2.(-2)(x2y2+y2z2+z2x2)

=-4(x2y2+y2z2+z2x2)

Lại có

(b+c^2)^2

=[(x^2+y^2+z^2)+(x+y+z)2]2

=[(x^2+y^2+z^2)-(x^2+y^2+z^2)-2(xy+yz+zx)]2

=4(xy+yz+zx)2

=>2(a-b^2)+(b+c^2)^2

=-4(x2y2+y2z2+z2x2)+4(xy+yz+zx)2

=8xyz(x+y+z)

17 tháng 12 2023

a: \(2x^2+3xy-14y^2\)

\(=2x^2+7xy-4xy-14y^2\)

\(=\left(2x^2+7xy\right)-\left(4xy+14y^2\right)\)

\(=x\left(2x+7y\right)-2y\left(2x+7y\right)\)

\(=\left(2x+7y\right)\left(x-2y\right)\)

b: \(\left(x-7\right)\left(x-5\right)\left(x-3\right)\left(x-1\right)+7\)

\(=\left(x-7\right)\left(x-1\right)\left(x-5\right)\left(x-3\right)+7\)

\(=\left(x^2-8x+7\right)\left(x^2-8x+15\right)+7\)

\(=\left(x^2-8x\right)^2+15\left(x^2-8x\right)+7\left(x^2-8x\right)+105+7\)

\(=\left(x^2-8x\right)^2+22\left(x^2-8x\right)+112\)

\(=\left(x^2-8x\right)^2+8\left(x^2-8x\right)+14\left(x^2-8x\right)+112\)

\(=\left(x^2-8x\right)\left(x^2-8x+8\right)+14\left(x^2-8x+8\right)\)

\(=\left(x^2-8x+8\right)\left(x^2-8x+14\right)\)

c: \(\left(x-3\right)^2+\left(x-3\right)\left(3x-1\right)-2\left(3x-1\right)^2\)

\(=\left(x-3\right)^2+2\left(x-3\right)\left(3x-1\right)-\left(x-3\right)\left(3x-1\right)-2\left(3x-1\right)^2\)

\(=\left(x-3\right)\left[\left(x-3\right)+2\left(3x-1\right)\right]-\left(3x-1\right)\left[\left(x-3\right)+2\left(3x-1\right)\right]\)

\(=\left(x-3+6x-2\right)\left(x-3-3x+1\right)\)

\(=\left(7x-5\right)\left(-2x-2\right)\)

\(=-2\left(x+1\right)\left(7x-5\right)\)

d: \(xy\left(x-y\right)+yz\left(y-z\right)+zx\left(z-x\right)\)

\(=x^2y-xy^2+y^2z-yz^2+zx\left(z-x\right)\)

\(=\left(x^2y-yz^2\right)-\left(xy^2-y^2z\right)+xz\left(z-x\right)\)

\(=y\left(x^2-z^2\right)-y^2\left(x-z\right)-xz\left(x-z\right)\)

\(=y\cdot\left(x-z\right)\left(x+z\right)-\left(x-z\right)\left(y^2+xz\right)\)

\(=\left(x-z\right)\left(xy+zy-y^2-xz\right)\)

\(=\left(x-z\right)\left[\left(xy-y^2\right)+\left(zy-zx\right)\right]\)

\(=\left(x-z\right)\left[y\cdot\left(x-y\right)-z\left(x-y\right)\right]\)

\(=\left(x-z\right)\left(x-y\right)\left(y-z\right)\)

14 tháng 10 2020

1) \(4x^2-7x-2=4x^2-8x+x-2=\left(4x^2-8x\right)+\left(x-2\right)\)

\(=4x\left(x-2\right)+\left(x-2\right)=\left(x-2\right)\left(4x+1\right)\)

2) \(4x^2+5x-6=4x^2+8x-3x-6=\left(4x^2+8x\right)-\left(3x+6\right)\)

\(=4x\left(x+2\right)-3\left(x+2\right)=\left(x+2\right)\left(4x-3\right)\)

3) \(5x^2-18x-8=5x^2-20x+2x-8=\left(5x^2-20x\right)+\left(2x-8\right)\)

\(=5x\left(x-4\right)+2\left(x-4\right)=\left(x-4\right)\left(5x+2\right)\)

4) \(xy\left(x+y\right)-yz\left(y+z\right)+xz\left(x-z\right)\)

\(=xy\left(x+y\right)-y^2z-yz^2+x^2z-xz^2\)

\(=xy\left(x+y\right)+\left(x^2z-y^2z\right)-\left(yz^2+xz^2\right)\)

\(=xy\left(x+y\right)+z\left(x^2-y^2\right)-z^2.\left(x+y\right)\)

\(=xy\left(x+y\right)+z\left(x-y\right)\left(x+y\right)-z^2\left(x+y\right)\)

\(=xy\left(x+y\right)+\left(zx-zy\right)\left(x+y\right)-z^2\left(x+y\right)\)

\(=\left(x+y\right)\left(xy+xz-yz-z^2\right)=\left(x+y\right).\left[x\left(y+z\right)-z\left(y+z\right)\right]\)

\(=\left(x+y\right)\left(y+z\right)\left(x-z\right)\)

14 tháng 10 2020

1) 4x2 - 7x - 2 = 4x2 - 8x + x - 2 = 4x( x - 2 ) + ( x - 2 ) = ( x - 2 )( 4x + 1 )

2) 4x2 + 5x - 6 = 4x2 - 8x + 3x - 6 = 4x( x - 2 ) + 3( x - 2 ) = ( x - 2 )( 4x + 3 )

3) 5x2 - 18x - 8 = 5x2 - 20x + 2x - 8 = 5x( x - 4 ) + 2( x - 4 ) = ( x - 4 )( 5x + 2 )

4) xy( x + y ) - yz( y + z ) + xz( x - z )

= x2y + xy2 - y2z - yz2 + xz( x - z )

= ( x2y - yz2 ) + ( xy2 - y2z ) + xz( x - z )

= y( x2 - z2 ) + y2( x - z ) + xz( x - z )

= y( x - z )( x + z ) + y2( x - z ) + xz( x - z )

= ( x - z )[ y( x + z ) + y2 + xz ]

= ( x - z )( xy + yz + y2 + xz )

= ( x - z )[ ( xy + y2 ) + ( xz + yz ) ]

= ( x - z )[ y( x + y ) + z( x + y ) ]

= ( x - z )( x + y )( y + z )

5) xy( x + y ) + yz + xz( x + z ) + 2xyz ( đề có thiếu không vậy .-. )

10 tháng 7 2017

a) xy(x + y) + yz(z + y) + zx(z + x) + 3xyz

= [xy(x + y) + xyz] + [yz(z + y) + xyz] + [zx(z + x) + xyz]

= xy(x + y + z) + yz(x + y + z) + zx(x + y + z)

= (xy + yz + zx)(x + y + z)

b) Vô câu hỏi tương tự 

26 tháng 7 2017

a) xy(x + y) + yz(z + y) + zx(z + x) + 3xyz

= [xy(x + y) + xyz] + [yz(z + y) + xyz] + [zx(z + x) + xyz]

= xy(x + y + z) + yz(x + y + z) + zx(x + y + z)

= (xy + yz + zx)(x + y + z)

b) tương tự 

22 tháng 7 2015

A ) xy(z+y)+yz(y+z)+zx(z+x)

=y.[x(z+y)+z(y+z)]+zx(z+x)

=y.(xz+xy+zy+z2)+zx(z+x)

=y.(xz+z2+xy+zy)+zx(z+x)

=y.[z.(z+x)+y.(z+x)]+zx(z+x)

=y.(z+x)(z+y)+zx(z+x)

=(z+x)[y(z+y)+zx]

=(z+x)(yz+y2+zx)

B )xy(x+y)-yz(y+z)-zx(z-x)

=y.[x(x+y)-z(y+z)]-zx(z-x)

=y.(x2+xy-zy-z2)-zx(z-x)

=y.(x2-z2+xy-zy)-zx(z-x)

=y.[(x+z)(x-z)+y.(x-z)]-zx(z-x)

=y.(x-z)(x+z+y)+zx(x-z)

=(x-z)[y(x+z+y)+zx]

=(x-z)(yx+yz+y2+zx)

=(x-z)(yx+zx+yz+y2)

=(x-z)[x.(y+z)+y.(y+z)]

=(x-z)(y+z)(x+y)

 

30 tháng 6 2021

b. \(\text{ xy(x+y)-yz(y+z)-xz(z-x) =xy(x+y+z-z)+yz(y+z)+xz(x-z) =xy(x-z)+xy(y+z)+yz(y+z)+xz(x-z) =(x+y)(y+z)(x-z) }\)