Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.\(x^2-7x+6\)\(=x^2-6x-x+6\)\(=x\left(x-6\right)-\left(x-6\right)\)\(=\left(x-1\right)\left(x-6\right)\)
2.\(y^2+xy-2x^2=y+2xy-xy-2x^2\)\(=y\left(y-x\right)+2x\left(y-x\right)\)\(=\left(y+2x\right)\left(y-x\right)\)
Học tốt !
1. x2 - 7x + 6
= x2 - x - 6x + 6
= x( x - 1 ) - 6( x - 1 )
= ( x - 6 )( x - 1 )
2. y2 + xy - 2x2
= y2 - xy + 2xy - 2x2
= y( y - x ) + 2x( y - x )
= ( y + 2x )( y - x )
a) \(4x^4+4x^3+5x^2+2x+1\)
= \(x^2\left(4x^2+4x+5+\frac{4}{x}+\frac{1}{x^2}\right)\)
=\(x^2\left[\left(4x^2+\frac{1}{x^2}\right)+2\left(2x+\frac{1}{x}\right)+5\right]\)(1)
Đặt \(2x+\frac{1}{x}=a\)thì \(\left(2x+\frac{1}{x}\right)^2=a^2\)\(\Rightarrow4x^2+\frac{1}{x^2}=a^2-4\)
Thay vào (1), ta có:
\(x^2\left(a^2-4+2a+5\right)\)
=\(x^2\left(a^2+2a+1\right)\)
=\(x^2\left(a+1\right)^2\)
=\(\left[x\left(a+1\right)\right]^2\)
=\(\left[x\left(2x+\frac{1}{x}+1\right)\right]^2\)
=\(\left(2x^2+1+x\right)^2\)
\(=\left(2x^2+x+1\right)^2\)
a) Đặt f(x) = 4x4 + 4x3 + 5x2 + 2x + 1
Sau khi phân tích thì đa thức có dạng ( 2x2 + ax + 1 )( 2x2 + bx + 1 )
=> f(x) = ( 2x2 + ax + 1 )( 2x2 + bx + 1 )
<=> f(x) = 4x4 + 2bx3 + 2x2 + 2ax3 + abx2 + ax + 2x2 + bx + 1
<=> f(x) = 4x4 + ( a + b )2x3 + ( ab + 4 )x2 + ( a + b )x + 1
Đồng nhất hệ số ta có : \(\hept{\begin{cases}a+b=2\\ab=1\end{cases}\Leftrightarrow}a=b=1\)
Vậy f(x) = 4x4 + 4x3 + 5x2 + 2x + 1 = ( 2x2 + x + 1 )2
b) 3x4 + 11x3 - 7x2 - 2x + 1
= 3x4 - x3 + 12x3 - 4x2 - 3x2 + x - 3x + 1
= x3( 3x - 1 ) + 4x2( 3x - 1 ) - x( 3x - 1 ) - ( 3x - 1 )
= ( 3x - 1 )( x3 + 4x2 - x - 1 )
a)\(x^2+7x+6\)
\(=x^2+6x+x+6\)
\(=x\left(x+6\right)+\left(x+6\right)\)
\(=\left(x+1\right)\left(x+6\right)\)
b)\(x^4+2016x^2+2015x+2016\)
\(=x^4+2016x^2+\left(2016x-x\right)+2016\)
\(=\left(x^4-x\right)+\left(2016x^2+2016x+2016\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+2016\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2016\right)\)
Bài 3:
Từ \(a^2+b^2+c^2+3=2\left(a+b+c\right)\)
\(\Rightarrow a^2+b^2+c^2+3-2a-2b-2c=0\)
\(\Rightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)=0\)
\(\Rightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\) (1)
Ta thấy:\(\begin{cases}\left(a-1\right)^2\ge0\\\left(b-1\right)^2\ge0\\\left(c-1\right)^2\ge0\end{cases}\)
\(\Rightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge0\) (2)
Từ (1) và (2) \(\Rightarrow\begin{cases}\left(a-1\right)^2=0\\\left(b-1\right)^2=0\\\left(c-1\right)^2=0\end{cases}\)
\(\Rightarrow\begin{cases}a-1=0\\b-1=0\\c-1=0\end{cases}\)\(\Rightarrow\begin{cases}a=1\\b=1\\c=1\end{cases}\)
\(\Rightarrow a=b=c=1\Rightarrow H=1\cdot1\cdot1+1^{2014}+1^{2015}+1^{2016}=1+1+1+1=4\)
\(x^3-x^2-14x+24\)
\(=x^3-2x^2+x^2-2x-12x+24\)
\(=x^2\left(x-2\right)+x\left(x-2\right)-12\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+x-12\right)\)
\(=\left(x-2\right).\left[x^2+4x-3x-12\right]\)
\(=\left(x-2\right).\left[x\left(x+4\right)-3\left(x+4\right)\right]\)
\(=\left(x-2\right)\left(x+4\right)\left(x-3\right)\)
\(x^4+x^3+2x-4\)
\(=x^4-x^3+2x^3-2x^2+2x^2-2x+4x-4\)
\(=x^3\left(x-1\right)+2x^2\left(x-1\right)+2x\left(x-1\right)+4\left(x-1\right)\)
\(=\left(x-1\right)\left(x^3+2x^2+2x+4\right)\)
\(=\left(x-1\right).\left[x^2\left(x+2\right)+2\left(x+2\right)\right]\)
\(=\left(x-1\right)\left(x+2\right)\left(x^2+2\right)\)
\(8x^4-2x^3-3x^2-2x-1\)
\(=8x^4-8x^3+6x^3-6x^2+3x^2-3x+x-1\)
\(=8x^3\left(x-1\right)+6x^2\left(x-1\right)+3x\left(x-1\right)+x-1\)
\(=\left(x-1\right)\left(8x^3+6x^2+3x+1\right)\)
\(=\left(x-1\right)\left[\left(8x^3+1\right)+\left(6x^2+3x\right)\right]\)
\(=\left(x-1\right)\left[\left(2x+1\right)\left(4x^2-2x+1\right)+3x\left(2x+1\right)\right]\)
\(=\left(x-1\right)\left(2x+1\right)\left(4x^2+x+1\right)\)
\(3x^2-7x+2\)
\(=3x^2-6x-x+2\)
\(=3x\left(x-2\right)-\left(x-2\right)\)
\(=\left(x-2\right)\left(3x-1\right)\)
Chúc bạn học tốt.
a. 2x2-xy
= x(2x-y)
b. x2-xy-x+y
= (x2-xy)-(x+y)
=x(x-y)-(x-y)
=(x-y)(x-1)
a, \(x^4+6x^3+7x^2-6x+1\)
\(=x^4-2x^2+1+6x^3+9x^2+6x\)
\(=\left(x^2-1\right)^2+6x\left(x^2-1\right)+9x^2\)
\(=\left(x^2-1+3x\right)^2\)
b, \(x^4-7x^3+14x^2-7x+1\)
\(=x^4+2x^2+1+7x^3+12x^2-7x\)
\(=\left(x^2+1\right)^2-7x\left(x^2+1\right)+12^2\)
\(=\left(x^2-1+3x\right)^2\)
c, \(12x^2-11x-36\)
\(=12x^2-27x+16x-36\)
\(=3x\left(4x-9\right)+4\left(4x-9\right)\)
\(=\left(4x-9\right)\left(3x+4\right)\)
1. \(11x-7x+6=4x+6=2\left(2x+3\right)\)
2. \(7x^2+xy-2x^2=5x^2+xy=x\left(5x+y\right)\)
3. \(2x^2-x-1=\left(2x+1\right)\left(x-1\right)\)