\(yz.\left(y+z\right)+xz.\left(z-x...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
20 tháng 10 2020

Lời giải:

a)

$yz(y+z)+xz(z-x)-xy(x+y)=yz(y+z)+xz^2-x^2z-x^2y-xy^2$

$=yz(y+z)+x(z^2-y^2)-x^2(z+y)$

$=yz(y+z)+x(z-y)(z+y)-x^2(z+y)$

$=(y+z)(yz+xz-xy-x^2)$

$=(y+z)[z(x+y)-x(x+y)]=(y+z)(x+y)(z-x)$

b)

$2a^2b+4ab^2-a^2c+ac^2-4b^2c+2bc^2-4abc$

$=(2a^2b+4ab^2)-(a^2c+2abc)+(ac^2+2bc^2)-(4b^2c+2abc)$

$=2ab(a+2b)-ac(a+2b)+c^2(a+2b)-2bc(a+2b)$

$=(a+2b)(2ab-ac+c^2-2bc)$

$=(a+2b)[2b(a-c)-c(a-c)]$

$=(a+2b)(2b-c)(a-c)$

c)

$y(x-2z)^2+8xyz+x(y-2z)^2-2z(x+y)^2$

$=y[(y-2z)+(x-y)]^2+8xyz+x(y-2z)^2-2z(x+y)^2$

$=y(y-2z)^2+y(x-y)^2+2y(y-2z)(x-y)+8xyz+x(y-2z)^2-2z(x+y)^2$

$=y(y-2z)^2+y(x+y)^2-4xy^2+2y(y-2z)(x-y)+8xyz+x(y-2z)^2-2z(x+y)^2$

$=(y-2z)^2(x+y)+(x+y)^2(y-2z)-4xy(y-2z)+2y(y-2z)(x-y)$

$=(y-2z)^2(x+y)+(x+y)^2(y-2z)+2y(y-2z)(x-y-2x)$

$=(y-2z)^2(x+y)+(x+y)^2(y-2z)-2y(y-2z)(x+y)$

$=(x+y)(y-2z)[(y-2z)+(x+y)-2y]=(x+y)(y-2z)(x-2z)$

17 tháng 8 2020

Lời giải:

a)

$yz(y+z)+xz(z-x)-xy(x+y)=yz(y+z)+xz^2-x^2z-x^2y-xy^2$

$=yz(y+z)+x(z^2-y^2)-x^2(z+y)$

$=yz(y+z)+x(z-y)(z+y)-x^2(z+y)$

$=(y+z)(yz+xz-xy-x^2)$

$=(y+z)[z(x+y)-x(x+y)]=(y+z)(x+y)(z-x)$

b)

$2a^2b+4ab^2-a^2c+ac^2-4b^2c+2bc^2-4abc$

$=(2a^2b+4ab^2)-(a^2c+2abc)+(ac^2+2bc^2)-(4b^2c+2abc)$

$=2ab(a+2b)-ac(a+2b)+c^2(a+2b)-2bc(a+2b)$

$=(a+2b)(2ab-ac+c^2-2bc)$

$=(a+2b)[2b(a-c)-c(a-c)]$

$=(a+2b)(2b-c)(a-c)$

c)

$y(x-2z)^2+8xyz+x(y-2z)^2-2z(x+y)^2$

$=y[(y-2z)+(x-y)]^2+8xyz+x(y-2z)^2-2z(x+y)^2$

$=y(y-2z)^2+y(x-y)^2+2y(y-2z)(x-y)+8xyz+x(y-2z)^2-2z(x+y)^2$

$=y(y-2z)^2+y(x+y)^2-4xy^2+2y(y-2z)(x-y)+8xyz+x(y-2z)^2-2z(x+y)^2$

$=(y-2z)^2(x+y)+(x+y)^2(y-2z)-4xy(y-2z)+2y(y-2z)(x-y)$

$=(y-2z)^2(x+y)+(x+y)^2(y-2z)+2y(y-2z)(x-y-2x)$

$=(y-2z)^2(x+y)+(x+y)^2(y-2z)-2y(y-2z)(x+y)$

$=(x+y)(y-2z)[(y-2z)+(x+y)-2y]=(x+y)(y-2z)(x-2z)$

2 tháng 9 2018

\(yz\left(y+z\right)+zx\left(z-x\right)-xy\left(x+y\right)\)

\(=yz\left(y+z\right)+zx\left(z-x\right)-xy\left[\left(y+z\right)-\left(z-x\right)\right]\)

\(=yz\left(y+z\right)+zx\left(z-x\right)-xy\left(y+z\right)+xy\left(z-x\right)\)

\(=y\left(y+z\right)\left(z-x\right)+x\left(z-x\right)\left(z-y\right)\)

\(=\left(z-x\right)\left(yz-xy+xz-xy\right)\)

13 tháng 12 2018

\(2xyz+x^2y+xy^2+x^2z+xz^2+y^2z+yz^2\)

\(=x^2\left(y+z\right)+yz\left(y+z\right)+x\left(y^2+z^3\right)+2xyz\)

\(=\left(y+z\right)\left(x^2+yz\right)+x\left(y^2+z^2+2yz\right)\)

\(=\left(y+z\right)\left(x^2+yz\right)+x\left(y+z\right)^2\)

\(=\left(y+z\right)\left(x^2+yz\right)+xy+xz\)

\(=\left(y+z\right)\left[x\left(x+2\right)+y\left(x+2\right)\right]\)

\(=\left(y+z\right)\left(x+y\right)\left(x+2\right)\)

13 tháng 12 2018

\(b,x^2\left(y-z\right)+y^2\left(z-y\right)+z^2\left(x-y\right)\)

\(=x^2\left(y-z\right)+y^2z-y^2x+z^2x-z^2y\)

\(=x^2\left(y-z\right)+yz\left(y-z\right)-x\left(y^2-z^2\right)\)

\(=\left(y-z\right)\left[x^2+yz-x\left(y+z\right)\right]\)

\(=\left(y-z\right)\left[x\left(x-y\right)-z\left(x-y\right)\right]\)

\(=\left(y-z\right)\left[\left(x-z\right)\left(x-y\right)\right]\)

20 tháng 3 2016

b) a3 + b3 + c3 - 3abc

= ( a + b)3 - 3ab - 3ba + c - 3abc

= (a3 + 3a2b + 3ab2 + b3) + c3 - (3a2b + 3ab2 + 3ab) 

= (a + b)3 + c2 - 3ab(a + b + c)

= (a + b + c) [ (a  + b)2 - ( a + b )c + c^2 ]  - 3ab(a + b + c)

=  ( a + b + c ) ( a2 + b2 + 2ab - ac - bc + c2 -3ab )

=  ( a + b + c ) ( a2 + b2 + c2 - ab - ac - bc 

22 tháng 6 2018

b  \(x^8y^8+x^4y^4+1=x^8y^8+2x^4y^4+1-x^4y^4=\left(x^4y^4\right)^2+2x^4y^4+1-\left(x^2y^2\right)^2\)

\(=\left(x^4y^4+1\right)^2-\left(x^2y^2\right)^2=\left(x^4y^4-x^2y^2+1\right)\left(x^4y^4+x^2y^2+1\right)\)

c  \(x^2y+xy^2+xz^2+x^2z+y^2z+yz^2+2xyz=\left(x^2y+x^2z+xyz+xy^2\right)+\left(xz^2+yz^2+xyz+y^2z\right)\)

\(=x\left(xy+xz+yz+y^2\right)+z\left(xz+yz+xy+y^2\right)=\left(x+z\right)\left(xy+xz+yz+y^2\right)\)

\(=\left(x+z\right)\left(x\left(y+z\right)+y\left(y+z\right)\right)=\left(x+z\right)\left(x+y\right)\left(y+z\right)\)

a  \(3xyz+x\left(y^2+z^2\right)+y\left(x^2+z^2\right)+z\left(x^2+y^2\right)=3xyz+xy^2+xz^2+x^2y+yz^2+x^2z+y^2z\)

\(=\left(x^2y+x^2z+xyz\right)+\left(xy^2+xyz+y^2z\right)+\left(xyz+xz^2+yz^2\right)\)

\(=x\left(xy+xz+yz\right)+y\left(xy+xz+yz\right)+z\left(xy+xz+yz\right)=\left(x+y+z\right)\left(xy+xz+yz\right)\)

20 tháng 8 2015

bạn nên viết ra 2 câu 1 bài